Luis E. Chuquimarca , Boris X. Vintimilla , Sergio A. Velastin
{"title":"利用 CNN 模型对水果分级的外部质量检测进行审查","authors":"Luis E. Chuquimarca , Boris X. Vintimilla , Sergio A. Velastin","doi":"10.1016/j.aiia.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>This article reviews the state of the art of recent CNN models used for external quality inspection of fruits, considering parameters such as color, shape, size, and defects, used to categorize fruits according to international marketing levels of agricultural products. The literature review considers the number of fruit images in different datasets, the type of images used by the CNN models, the performance results obtained by each CNNs, the optimizers that help increase the accuracy of these, and the use of pre-trained CNN models used for transfer learning. CNN models have used various types of images in the visible, infrared, hyperspectral, and multispectral bands. Furthermore, the fruit image datasets used are either real or synthetic. Finally, several tables summarize the articles reviewed, which are prioritized according to inspection parameters, facilitating a critical comparison of each work.</div></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of external quality inspection for fruit grading using CNN models\",\"authors\":\"Luis E. Chuquimarca , Boris X. Vintimilla , Sergio A. Velastin\",\"doi\":\"10.1016/j.aiia.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article reviews the state of the art of recent CNN models used for external quality inspection of fruits, considering parameters such as color, shape, size, and defects, used to categorize fruits according to international marketing levels of agricultural products. The literature review considers the number of fruit images in different datasets, the type of images used by the CNN models, the performance results obtained by each CNNs, the optimizers that help increase the accuracy of these, and the use of pre-trained CNN models used for transfer learning. CNN models have used various types of images in the visible, infrared, hyperspectral, and multispectral bands. Furthermore, the fruit image datasets used are either real or synthetic. Finally, several tables summarize the articles reviewed, which are prioritized according to inspection parameters, facilitating a critical comparison of each work.</div></div>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000369\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000369","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A review of external quality inspection for fruit grading using CNN models
This article reviews the state of the art of recent CNN models used for external quality inspection of fruits, considering parameters such as color, shape, size, and defects, used to categorize fruits according to international marketing levels of agricultural products. The literature review considers the number of fruit images in different datasets, the type of images used by the CNN models, the performance results obtained by each CNNs, the optimizers that help increase the accuracy of these, and the use of pre-trained CNN models used for transfer learning. CNN models have used various types of images in the visible, infrared, hyperspectral, and multispectral bands. Furthermore, the fruit image datasets used are either real or synthetic. Finally, several tables summarize the articles reviewed, which are prioritized according to inspection parameters, facilitating a critical comparison of each work.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture