利用 CNN 模型对水果分级的外部质量检测进行审查

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-10-16 DOI:10.1016/j.aiia.2024.10.002
Luis E. Chuquimarca , Boris X. Vintimilla , Sergio A. Velastin
{"title":"利用 CNN 模型对水果分级的外部质量检测进行审查","authors":"Luis E. Chuquimarca ,&nbsp;Boris X. Vintimilla ,&nbsp;Sergio A. Velastin","doi":"10.1016/j.aiia.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>This article reviews the state of the art of recent CNN models used for external quality inspection of fruits, considering parameters such as color, shape, size, and defects, used to categorize fruits according to international marketing levels of agricultural products. The literature review considers the number of fruit images in different datasets, the type of images used by the CNN models, the performance results obtained by each CNNs, the optimizers that help increase the accuracy of these, and the use of pre-trained CNN models used for transfer learning. CNN models have used various types of images in the visible, infrared, hyperspectral, and multispectral bands. Furthermore, the fruit image datasets used are either real or synthetic. Finally, several tables summarize the articles reviewed, which are prioritized according to inspection parameters, facilitating a critical comparison of each work.</div></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of external quality inspection for fruit grading using CNN models\",\"authors\":\"Luis E. Chuquimarca ,&nbsp;Boris X. Vintimilla ,&nbsp;Sergio A. Velastin\",\"doi\":\"10.1016/j.aiia.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article reviews the state of the art of recent CNN models used for external quality inspection of fruits, considering parameters such as color, shape, size, and defects, used to categorize fruits according to international marketing levels of agricultural products. The literature review considers the number of fruit images in different datasets, the type of images used by the CNN models, the performance results obtained by each CNNs, the optimizers that help increase the accuracy of these, and the use of pre-trained CNN models used for transfer learning. CNN models have used various types of images in the visible, infrared, hyperspectral, and multispectral bands. Furthermore, the fruit image datasets used are either real or synthetic. Finally, several tables summarize the articles reviewed, which are prioritized according to inspection parameters, facilitating a critical comparison of each work.</div></div>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000369\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000369","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了近期用于水果外部质量检测的 CNN 模型的最新技术水平,考虑了水果的颜色、形状、大小和缺陷等参数,用于根据农产品的国际营销水平对水果进行分类。文献综述考虑了不同数据集中的水果图像数量、CNN 模型使用的图像类型、每个 CNN 获得的性能结果、有助于提高准确性的优化器,以及用于迁移学习的预训练 CNN 模型的使用情况。CNN 模型使用了可见光、红外、高光谱和多光谱波段的各类图像。此外,所使用的水果图像数据集要么是真实的,要么是合成的。最后,几个表格总结了所查阅的文章,并根据检测参数进行了优先排序,以便于对每项工作进行批判性比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of external quality inspection for fruit grading using CNN models
This article reviews the state of the art of recent CNN models used for external quality inspection of fruits, considering parameters such as color, shape, size, and defects, used to categorize fruits according to international marketing levels of agricultural products. The literature review considers the number of fruit images in different datasets, the type of images used by the CNN models, the performance results obtained by each CNNs, the optimizers that help increase the accuracy of these, and the use of pre-trained CNN models used for transfer learning. CNN models have used various types of images in the visible, infrared, hyperspectral, and multispectral bands. Furthermore, the fruit image datasets used are either real or synthetic. Finally, several tables summarize the articles reviewed, which are prioritized according to inspection parameters, facilitating a critical comparison of each work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1