Deqing Zhu (朱德庆) , Tingguo Chen (陈廷国) , Chengjiao Ren (任珵娇) , Ke Wang (王可)
{"title":"挡风玻璃的点阵多孔介质模型及其仿真精度分析","authors":"Deqing Zhu (朱德庆) , Tingguo Chen (陈廷国) , Chengjiao Ren (任珵娇) , Ke Wang (王可)","doi":"10.1016/j.jweia.2024.105921","DOIUrl":null,"url":null,"abstract":"<div><div>Porous medium models have long been prevalent numerical computation tools. Although they exhibit swift computational speed, their accuracy in simulating windscreen perforation structures is challenged. This paper introduces the innovative dot-array porous medium (DAPM) model, which accurately portrays the perforation structure and material characteristics of a windscreen by establishing virtual holes on the porous medium. Not only does it simplify modeling by eliminating complex perforation processes, but it also adeptly simulates the flow behavior of the windscreen. The comprehensive comparison between the DAPM model and the physical mesh model, traditional porous medium model, as well as wind tunnel test results, demonstrates that the DAPM model not only possesses rapid computational speed but also delivers outstanding precision in results. In terms of velocity distribution, vortex distribution, and flow intensity in the flow field, the model indicates a high level of accuracy, clearly exceeding that of the porous medium model. Moreover, the DAPM model showcases high versatility and adjustability in practical applications. By adjusting dimension parameters, it demonstrates the capability to precisely simulate any windscreen with holes arranged in a matrix pattern. This research provides an efficient and reliable tool for the numerical simulation of windscreens, with broad application prospects.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105921"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dot-array porous medium model for windscreen and its simulation accuracy analysis\",\"authors\":\"Deqing Zhu (朱德庆) , Tingguo Chen (陈廷国) , Chengjiao Ren (任珵娇) , Ke Wang (王可)\",\"doi\":\"10.1016/j.jweia.2024.105921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Porous medium models have long been prevalent numerical computation tools. Although they exhibit swift computational speed, their accuracy in simulating windscreen perforation structures is challenged. This paper introduces the innovative dot-array porous medium (DAPM) model, which accurately portrays the perforation structure and material characteristics of a windscreen by establishing virtual holes on the porous medium. Not only does it simplify modeling by eliminating complex perforation processes, but it also adeptly simulates the flow behavior of the windscreen. The comprehensive comparison between the DAPM model and the physical mesh model, traditional porous medium model, as well as wind tunnel test results, demonstrates that the DAPM model not only possesses rapid computational speed but also delivers outstanding precision in results. In terms of velocity distribution, vortex distribution, and flow intensity in the flow field, the model indicates a high level of accuracy, clearly exceeding that of the porous medium model. Moreover, the DAPM model showcases high versatility and adjustability in practical applications. By adjusting dimension parameters, it demonstrates the capability to precisely simulate any windscreen with holes arranged in a matrix pattern. This research provides an efficient and reliable tool for the numerical simulation of windscreens, with broad application prospects.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"254 \",\"pages\":\"Article 105921\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002848\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002848","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Dot-array porous medium model for windscreen and its simulation accuracy analysis
Porous medium models have long been prevalent numerical computation tools. Although they exhibit swift computational speed, their accuracy in simulating windscreen perforation structures is challenged. This paper introduces the innovative dot-array porous medium (DAPM) model, which accurately portrays the perforation structure and material characteristics of a windscreen by establishing virtual holes on the porous medium. Not only does it simplify modeling by eliminating complex perforation processes, but it also adeptly simulates the flow behavior of the windscreen. The comprehensive comparison between the DAPM model and the physical mesh model, traditional porous medium model, as well as wind tunnel test results, demonstrates that the DAPM model not only possesses rapid computational speed but also delivers outstanding precision in results. In terms of velocity distribution, vortex distribution, and flow intensity in the flow field, the model indicates a high level of accuracy, clearly exceeding that of the porous medium model. Moreover, the DAPM model showcases high versatility and adjustability in practical applications. By adjusting dimension parameters, it demonstrates the capability to precisely simulate any windscreen with holes arranged in a matrix pattern. This research provides an efficient and reliable tool for the numerical simulation of windscreens, with broad application prospects.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.