Junhao Huang, Haijia Wen, Zhuohang Li, Yalan Zhang
{"title":"以滑坡为导向的山区城市抗灾能力评估:中国重庆案例研究","authors":"Junhao Huang, Haijia Wen, Zhuohang Li, Yalan Zhang","doi":"10.1016/j.rcns.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Natural and human-made disasters are threatening cities around the world. The resilience of cities plays a critical role in disaster risk response and post-disaster recovery. In mountainous cities, landslides are among the most frequent and destructive hazards. This study presents a novel methodological framework for assessing the spatial resilience of mountainous cities specifically against landslides. Focusing on Chongqing in the Three Gorges Reservoir region, this study conceptually divides the disaster resilience of mountain cities to landslides into two dimensions: environmental resilience and social resilience. This study developed a comprehensive database by compiling data from 4,464 historical landslide events, incorporating 17 environmental resilience indicators and 16 social resilience indicators. Random forest (RF) model was employed to evaluate environmental resilience, achieving a high AUC of 0.968 and an accuracy of 97.1 %. Social resilience was assessed by the Analytic Hierarchy Process (AHP), and comprehensive resilience was ranked by the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Key findings include: (1) Establishing a multi-dimensional resilience indicator system that effectively assesses landslide-oriented resilience in mountainous cities. (2) Comprehensive resilience in mountainous cities exhibit distinct spatial clustering patterns. Regions with lower environmental resilience are mainly characterized by high rainfall and complex terrain. higher social resilience concentrated in city centers, while peripheral regions face challenges due to weaker economies and inadequate healthcare infrastructure. (3) In the future development of mountain cities, comprehensive and sustainable strategies should be adopted to balance the relationship between environmental resilience and social resilience. This study provides a robust framework for disaster prevention and resilience assessment in mountainous cities, which can be applied to evaluate the disaster resistance capabilities of other mountainous cities.</div></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"3 4","pages":"Pages 34-51"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landslide-oriented disaster resilience evaluation in mountainous cities: A case study in Chongqing, China\",\"authors\":\"Junhao Huang, Haijia Wen, Zhuohang Li, Yalan Zhang\",\"doi\":\"10.1016/j.rcns.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural and human-made disasters are threatening cities around the world. The resilience of cities plays a critical role in disaster risk response and post-disaster recovery. In mountainous cities, landslides are among the most frequent and destructive hazards. This study presents a novel methodological framework for assessing the spatial resilience of mountainous cities specifically against landslides. Focusing on Chongqing in the Three Gorges Reservoir region, this study conceptually divides the disaster resilience of mountain cities to landslides into two dimensions: environmental resilience and social resilience. This study developed a comprehensive database by compiling data from 4,464 historical landslide events, incorporating 17 environmental resilience indicators and 16 social resilience indicators. Random forest (RF) model was employed to evaluate environmental resilience, achieving a high AUC of 0.968 and an accuracy of 97.1 %. Social resilience was assessed by the Analytic Hierarchy Process (AHP), and comprehensive resilience was ranked by the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Key findings include: (1) Establishing a multi-dimensional resilience indicator system that effectively assesses landslide-oriented resilience in mountainous cities. (2) Comprehensive resilience in mountainous cities exhibit distinct spatial clustering patterns. Regions with lower environmental resilience are mainly characterized by high rainfall and complex terrain. higher social resilience concentrated in city centers, while peripheral regions face challenges due to weaker economies and inadequate healthcare infrastructure. (3) In the future development of mountain cities, comprehensive and sustainable strategies should be adopted to balance the relationship between environmental resilience and social resilience. This study provides a robust framework for disaster prevention and resilience assessment in mountainous cities, which can be applied to evaluate the disaster resistance capabilities of other mountainous cities.</div></div>\",\"PeriodicalId\":101077,\"journal\":{\"name\":\"Resilient Cities and Structures\",\"volume\":\"3 4\",\"pages\":\"Pages 34-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resilient Cities and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772741624000589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741624000589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Landslide-oriented disaster resilience evaluation in mountainous cities: A case study in Chongqing, China
Natural and human-made disasters are threatening cities around the world. The resilience of cities plays a critical role in disaster risk response and post-disaster recovery. In mountainous cities, landslides are among the most frequent and destructive hazards. This study presents a novel methodological framework for assessing the spatial resilience of mountainous cities specifically against landslides. Focusing on Chongqing in the Three Gorges Reservoir region, this study conceptually divides the disaster resilience of mountain cities to landslides into two dimensions: environmental resilience and social resilience. This study developed a comprehensive database by compiling data from 4,464 historical landslide events, incorporating 17 environmental resilience indicators and 16 social resilience indicators. Random forest (RF) model was employed to evaluate environmental resilience, achieving a high AUC of 0.968 and an accuracy of 97.1 %. Social resilience was assessed by the Analytic Hierarchy Process (AHP), and comprehensive resilience was ranked by the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Key findings include: (1) Establishing a multi-dimensional resilience indicator system that effectively assesses landslide-oriented resilience in mountainous cities. (2) Comprehensive resilience in mountainous cities exhibit distinct spatial clustering patterns. Regions with lower environmental resilience are mainly characterized by high rainfall and complex terrain. higher social resilience concentrated in city centers, while peripheral regions face challenges due to weaker economies and inadequate healthcare infrastructure. (3) In the future development of mountain cities, comprehensive and sustainable strategies should be adopted to balance the relationship between environmental resilience and social resilience. This study provides a robust framework for disaster prevention and resilience assessment in mountainous cities, which can be applied to evaluate the disaster resistance capabilities of other mountainous cities.