Xin Chen , Chuanhui Yang , Qianying Wei , Mei Huang , Aiping Wang , Mei Zhang
{"title":"HNF1B的新型突变促进了铁蛋白沉积介导的肾间质细胞纤维化","authors":"Xin Chen , Chuanhui Yang , Qianying Wei , Mei Huang , Aiping Wang , Mei Zhang","doi":"10.1016/j.bbrc.2024.150803","DOIUrl":null,"url":null,"abstract":"<div><div>Maturity onset diabetes of the young type 5(MODY5) is typically attributed to mutations in the HNF1B gene, which encodes transcription factors that play a significant role in kidney development and function maintenance. In this study, we identified a novel HNF1B gene mutation (c.445C > A) in a young male MODY5 patient exhibiting elevated serum creatinine levels and albuminuria. Through transfection of wild type and mutant HNF1B plasmids into mouse mesangial cells (MMCs), we investigated the impact on molecular indicators related to proliferation, fibrosis and oxidative stress. The results revealed that the HNF1B novel mutation promoted the expression of fibronectin, type 1 collagen, and CyclinD1, as well as increasing cellular oxidative stress and susceptibility to ferroptosis in MMCs. Our findings established a novel association between HNF1B mutant diseases and mesangial cell proliferation and fibrosis, suggesting that mutations of HNF1B may contribute to the progression of renal function in MODY5 patients. Additionally, our results implicate potential therapeutic targets for restraining fibrosis.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel mutation in HNF1B promotes ferroptosis-mediated renal mesangial cells fibrosis\",\"authors\":\"Xin Chen , Chuanhui Yang , Qianying Wei , Mei Huang , Aiping Wang , Mei Zhang\",\"doi\":\"10.1016/j.bbrc.2024.150803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maturity onset diabetes of the young type 5(MODY5) is typically attributed to mutations in the HNF1B gene, which encodes transcription factors that play a significant role in kidney development and function maintenance. In this study, we identified a novel HNF1B gene mutation (c.445C > A) in a young male MODY5 patient exhibiting elevated serum creatinine levels and albuminuria. Through transfection of wild type and mutant HNF1B plasmids into mouse mesangial cells (MMCs), we investigated the impact on molecular indicators related to proliferation, fibrosis and oxidative stress. The results revealed that the HNF1B novel mutation promoted the expression of fibronectin, type 1 collagen, and CyclinD1, as well as increasing cellular oxidative stress and susceptibility to ferroptosis in MMCs. Our findings established a novel association between HNF1B mutant diseases and mesangial cell proliferation and fibrosis, suggesting that mutations of HNF1B may contribute to the progression of renal function in MODY5 patients. Additionally, our results implicate potential therapeutic targets for restraining fibrosis.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24013391\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24013391","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A novel mutation in HNF1B promotes ferroptosis-mediated renal mesangial cells fibrosis
Maturity onset diabetes of the young type 5(MODY5) is typically attributed to mutations in the HNF1B gene, which encodes transcription factors that play a significant role in kidney development and function maintenance. In this study, we identified a novel HNF1B gene mutation (c.445C > A) in a young male MODY5 patient exhibiting elevated serum creatinine levels and albuminuria. Through transfection of wild type and mutant HNF1B plasmids into mouse mesangial cells (MMCs), we investigated the impact on molecular indicators related to proliferation, fibrosis and oxidative stress. The results revealed that the HNF1B novel mutation promoted the expression of fibronectin, type 1 collagen, and CyclinD1, as well as increasing cellular oxidative stress and susceptibility to ferroptosis in MMCs. Our findings established a novel association between HNF1B mutant diseases and mesangial cell proliferation and fibrosis, suggesting that mutations of HNF1B may contribute to the progression of renal function in MODY5 patients. Additionally, our results implicate potential therapeutic targets for restraining fibrosis.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics