{"title":"在智能交通系统中发布相关位置数据的本地差分保密功能","authors":"Kah Meng Chong , Amizah Malip","doi":"10.1016/j.comnet.2024.110830","DOIUrl":null,"url":null,"abstract":"<div><div>The ubiquity of location positioning devices has facilitated the implementation of various Intelligent Transportation System (ITS) applications that generate an enormous volume of location data. Recently, Local Differential Privacy (LDP) has been proposed as a rigorous privacy framework that permits the continuous release of aggregate location statistics without relying on a trusted data curator. However, the conventional LDP was built upon the assumption of independent data, which may not be suitable for inherently correlated location data. This paper investigates the quantification of potential privacy leakage in a correlated location data release scenario under a local setting, which has not been addressed in the literature. Our analysis shows that the privacy guarantee of LDP could be degraded in the presence of spatial–temporal and user correlations, albeit the perturbation is performed locally and independently by the users. This privacy guarantee is bounded by a privacy barrier that is affected by the intensity of correlations. We derive several important closed-form expressions and design efficient algorithms to compute such privacy leakage in a correlated location data. We subsequently propose a <span><math><mi>Δ</mi></math></span>-CLDP model that enhances the conventional LDP by incorporating the data correlations, and design a generic LDP data release framework that renders adaptive personalization of privacy preservation. Extensive theoretical analyses and simulations on scalable real datasets validate the security and performance efficiency of our work.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110830"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Differential Privacy for correlated location data release in ITS\",\"authors\":\"Kah Meng Chong , Amizah Malip\",\"doi\":\"10.1016/j.comnet.2024.110830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ubiquity of location positioning devices has facilitated the implementation of various Intelligent Transportation System (ITS) applications that generate an enormous volume of location data. Recently, Local Differential Privacy (LDP) has been proposed as a rigorous privacy framework that permits the continuous release of aggregate location statistics without relying on a trusted data curator. However, the conventional LDP was built upon the assumption of independent data, which may not be suitable for inherently correlated location data. This paper investigates the quantification of potential privacy leakage in a correlated location data release scenario under a local setting, which has not been addressed in the literature. Our analysis shows that the privacy guarantee of LDP could be degraded in the presence of spatial–temporal and user correlations, albeit the perturbation is performed locally and independently by the users. This privacy guarantee is bounded by a privacy barrier that is affected by the intensity of correlations. We derive several important closed-form expressions and design efficient algorithms to compute such privacy leakage in a correlated location data. We subsequently propose a <span><math><mi>Δ</mi></math></span>-CLDP model that enhances the conventional LDP by incorporating the data correlations, and design a generic LDP data release framework that renders adaptive personalization of privacy preservation. Extensive theoretical analyses and simulations on scalable real datasets validate the security and performance efficiency of our work.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"255 \",\"pages\":\"Article 110830\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624006625\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624006625","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Local Differential Privacy for correlated location data release in ITS
The ubiquity of location positioning devices has facilitated the implementation of various Intelligent Transportation System (ITS) applications that generate an enormous volume of location data. Recently, Local Differential Privacy (LDP) has been proposed as a rigorous privacy framework that permits the continuous release of aggregate location statistics without relying on a trusted data curator. However, the conventional LDP was built upon the assumption of independent data, which may not be suitable for inherently correlated location data. This paper investigates the quantification of potential privacy leakage in a correlated location data release scenario under a local setting, which has not been addressed in the literature. Our analysis shows that the privacy guarantee of LDP could be degraded in the presence of spatial–temporal and user correlations, albeit the perturbation is performed locally and independently by the users. This privacy guarantee is bounded by a privacy barrier that is affected by the intensity of correlations. We derive several important closed-form expressions and design efficient algorithms to compute such privacy leakage in a correlated location data. We subsequently propose a -CLDP model that enhances the conventional LDP by incorporating the data correlations, and design a generic LDP data release framework that renders adaptive personalization of privacy preservation. Extensive theoretical analyses and simulations on scalable real datasets validate the security and performance efficiency of our work.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.