采用多保真度方法对柔性膜翼进行气动弹性数值模拟

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-10-18 DOI:10.1016/j.ast.2024.109673
A.J. Torregrosa, A. Gil, P. Quintero, A. Cremades
{"title":"采用多保真度方法对柔性膜翼进行气动弹性数值模拟","authors":"A.J. Torregrosa,&nbsp;A. Gil,&nbsp;P. Quintero,&nbsp;A. Cremades","doi":"10.1016/j.ast.2024.109673","DOIUrl":null,"url":null,"abstract":"<div><div>Due to their lightness, the capacity to adapt to the flow conditions, and the safety when operating near humans, the use of membrane-resistant structures has increased in fields as micro aerial vehicles and yachts sails. This work focuses on the computational methodology required for simulating the aeroelastic coupling of the structure with the incident wind flow. A semi-monocoque structure (composed of a main spar, a set of ribs, and an external membrane) inside a wind tunnel is simulated using two different methodologies. Firstly, a complete fluid-structure interaction is calculated by combining the finite element methodology for the solid and the unsteady Reynolds average Navier-Stokes computational fluid dynamics for the air, including nonlinear effects and prestress. Then, a low-fidelity model is applied, obtaining the linear aeroelastic eigenvalues and the temporal response of the wing. Both methodologies results are in agreement with estimating the transient mean deformation and flutter velocity. However, the modal analysis tends to overestimate the aeroelastic effects, as it calculates potential aerodynamics, predicting an instability velocity lower than that provided by the transient simulations.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109673"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifidelity approach to the numerical aeroelastic simulation of flexible membrane wings\",\"authors\":\"A.J. Torregrosa,&nbsp;A. Gil,&nbsp;P. Quintero,&nbsp;A. Cremades\",\"doi\":\"10.1016/j.ast.2024.109673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to their lightness, the capacity to adapt to the flow conditions, and the safety when operating near humans, the use of membrane-resistant structures has increased in fields as micro aerial vehicles and yachts sails. This work focuses on the computational methodology required for simulating the aeroelastic coupling of the structure with the incident wind flow. A semi-monocoque structure (composed of a main spar, a set of ribs, and an external membrane) inside a wind tunnel is simulated using two different methodologies. Firstly, a complete fluid-structure interaction is calculated by combining the finite element methodology for the solid and the unsteady Reynolds average Navier-Stokes computational fluid dynamics for the air, including nonlinear effects and prestress. Then, a low-fidelity model is applied, obtaining the linear aeroelastic eigenvalues and the temporal response of the wing. Both methodologies results are in agreement with estimating the transient mean deformation and flutter velocity. However, the modal analysis tends to overestimate the aeroelastic effects, as it calculates potential aerodynamics, predicting an instability velocity lower than that provided by the transient simulations.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109673\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824008022\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008022","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

由于抗膜结构重量轻、适应流动条件的能力强,而且在靠近人体的情况下运行安全,因此在微型飞行器和游艇风帆等领域的应用越来越多。这项工作的重点是模拟结构与入射风流的气动弹性耦合所需的计算方法。采用两种不同的方法对风洞内的半单体结构(由主梁、一组肋骨和外部薄膜组成)进行了模拟。首先,结合固体的有限元方法和空气的非稳态雷诺平均纳维-斯托克斯流体力学计算方法(包括非线性效应和预应力),计算出完整的流固相互作用。然后,应用低保真模型,获得机翼的线性气动弹性特征值和时间响应。这两种方法的结果与估计瞬态平均变形和扑翼速度的结果一致。然而,模态分析往往会高估气动弹性效应,因为它计算的是潜在的空气动力学,预测的失稳速度低于瞬态模拟提供的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifidelity approach to the numerical aeroelastic simulation of flexible membrane wings
Due to their lightness, the capacity to adapt to the flow conditions, and the safety when operating near humans, the use of membrane-resistant structures has increased in fields as micro aerial vehicles and yachts sails. This work focuses on the computational methodology required for simulating the aeroelastic coupling of the structure with the incident wind flow. A semi-monocoque structure (composed of a main spar, a set of ribs, and an external membrane) inside a wind tunnel is simulated using two different methodologies. Firstly, a complete fluid-structure interaction is calculated by combining the finite element methodology for the solid and the unsteady Reynolds average Navier-Stokes computational fluid dynamics for the air, including nonlinear effects and prestress. Then, a low-fidelity model is applied, obtaining the linear aeroelastic eigenvalues and the temporal response of the wing. Both methodologies results are in agreement with estimating the transient mean deformation and flutter velocity. However, the modal analysis tends to overestimate the aeroelastic effects, as it calculates potential aerodynamics, predicting an instability velocity lower than that provided by the transient simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
A preliminary investigation on a novel vortex-controlled flameholder for aircraft engine combustor Genetic programming method for satellite optimization design with quantification of multi-granularity model uncertainty Prediction of aerodynamic coefficients for multi-swept delta wings via a hybrid neural network Robust optimization design of a blended wing-body drone considering influence of propulsion system Autonomous numerical predictor-corrector guidance for human Mars landing missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1