用于图像着色的局部和全局混合网络

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-10-01 DOI:10.1016/j.jvcir.2024.104312
Seunggyun Woo , Keunsoo Ko , Chang-Su Kim
{"title":"用于图像着色的局部和全局混合网络","authors":"Seunggyun Woo ,&nbsp;Keunsoo Ko ,&nbsp;Chang-Su Kim","doi":"10.1016/j.jvcir.2024.104312","DOIUrl":null,"url":null,"abstract":"<div><div>In general, CNN-based inpainting can recover local patterns effectively using convolutional filters, but it may not exploit global correlation fully. On the other hand, transformer-based inpainting can fill in large holes faithfully based on global correlation, rather than local one. In this paper, we propose a novel image inpainting algorithm, called local and global mixture (LGM), to take advantage of the strengths of both approaches and compensate for their weaknesses. The LGM network comprises the local inpainting network (LIN) and the global inpainting network (GIN) in parallel, which are based on convolutional layers and transformer blocks, respectively, and exchange their intermediate results with each other. Furthermore, we develop an error propagation model with a continuous error mask, updated in LIN but used in both LIN and GIN to provide more reliable inpainting results. Extensive experiments demonstrate that the proposed LGM algorithm provides excellent inpainting performance, which indicates the efficacy of the parallel combination of LIN and GIN and the effectiveness of the error propagation model.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104312"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local and global mixture network for image inpainting\",\"authors\":\"Seunggyun Woo ,&nbsp;Keunsoo Ko ,&nbsp;Chang-Su Kim\",\"doi\":\"10.1016/j.jvcir.2024.104312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In general, CNN-based inpainting can recover local patterns effectively using convolutional filters, but it may not exploit global correlation fully. On the other hand, transformer-based inpainting can fill in large holes faithfully based on global correlation, rather than local one. In this paper, we propose a novel image inpainting algorithm, called local and global mixture (LGM), to take advantage of the strengths of both approaches and compensate for their weaknesses. The LGM network comprises the local inpainting network (LIN) and the global inpainting network (GIN) in parallel, which are based on convolutional layers and transformer blocks, respectively, and exchange their intermediate results with each other. Furthermore, we develop an error propagation model with a continuous error mask, updated in LIN but used in both LIN and GIN to provide more reliable inpainting results. Extensive experiments demonstrate that the proposed LGM algorithm provides excellent inpainting performance, which indicates the efficacy of the parallel combination of LIN and GIN and the effectiveness of the error propagation model.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"104 \",\"pages\":\"Article 104312\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002682\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002682","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,基于 CNN 的涂色可以利用卷积滤波器有效地恢复局部模式,但可能无法充分利用全局相关性。另一方面,基于变换器的内绘可以基于全局相关性而非局部相关性忠实地填补大漏洞。在本文中,我们提出了一种名为局部和全局混合(LGM)的新型图像内绘算法,以利用这两种方法的优势并弥补它们的不足。LGM 网络由本地 Inpainting 网络 (LIN) 和全局 Inpainting 网络 (GIN) 并行组成,这两个网络分别基于卷积层和变换块,并相互交换中间结果。此外,我们还开发了一种带有连续误差掩码的误差传播模型,该模型在 LIN 中更新,但同时用于 LIN 和 GIN,以提供更可靠的绘制结果。广泛的实验证明,所提出的 LGM 算法具有出色的内绘制性能,这表明了 LIN 和 GIN 并行组合的功效以及误差传播模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local and global mixture network for image inpainting
In general, CNN-based inpainting can recover local patterns effectively using convolutional filters, but it may not exploit global correlation fully. On the other hand, transformer-based inpainting can fill in large holes faithfully based on global correlation, rather than local one. In this paper, we propose a novel image inpainting algorithm, called local and global mixture (LGM), to take advantage of the strengths of both approaches and compensate for their weaknesses. The LGM network comprises the local inpainting network (LIN) and the global inpainting network (GIN) in parallel, which are based on convolutional layers and transformer blocks, respectively, and exchange their intermediate results with each other. Furthermore, we develop an error propagation model with a continuous error mask, updated in LIN but used in both LIN and GIN to provide more reliable inpainting results. Extensive experiments demonstrate that the proposed LGM algorithm provides excellent inpainting performance, which indicates the efficacy of the parallel combination of LIN and GIN and the effectiveness of the error propagation model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT A memory access number constraint-based string prediction technique for high throughput SCC implemented in AVS3 Faster-slow network fused with enhanced fine-grained features for action recognition Lightweight macro-pixel quality enhancement network for light field images compressed by versatile video coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1