Menghui Jiang , Huanfeng Shen , Jie Li , Liangpei Zhang
{"title":"用于土壤水分降尺度的广义时空-光谱综合融合技术","authors":"Menghui Jiang , Huanfeng Shen , Jie Li , Liangpei Zhang","doi":"10.1016/j.isprsjprs.2024.10.012","DOIUrl":null,"url":null,"abstract":"<div><div>Soil moisture (SM) is one of the key land surface parameters, but the coarse spatial resolution of the passive microwave SM products constrains the precise monitoring of surface changes. The existing SM downscaling methods typically either utilize spatio-temporal information or leverage auxiliary parameters, without fully mining the complementary information between them. In this paper, a generalized spatio-temporal-spectral integrated fusion-based downscaling method is proposed to fully utilize the complementary features between multi-source auxiliary parameters and multi-temporal SM data. Specifically, we define the spectral characteristic of geographic objects as an assemblage of diverse attribute characteristics at specific spatio-temporal locations and scales. Based on this, the SM-related auxiliary parameter data can be treated as the generalized spectral characteristics of SM, and a generalized spatio-temporal-spectral integrated fusion framework is proposed to integrate the spatio-temporal features of the SM products and the generalized spectral features from the auxiliary parameters to generate fine spatial resolution SM data with high quality. In addition, considering the high heterogeneity of multi-source data, the proposed framework is based on a spatio-temporal constrained cycle generative adversarial network (STC-CycleGAN). The proposed STC-CycleGAN network comprises a forward integrated fusion stage and a backward spatio-temporal constraint stage, between which spatio-temporal cycle-consistent constraints are formed. Numerous experiments were conducted on Soil Moisture Active Passive (SMAP) SM products. The qualitative, quantitative, and in-situ site verification results demonstrate the capability of the proposed method to mine the complementary information of multi-source data and achieve high-accuracy downscaling of global daily SM data from 36 km to 9 km.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 70-86"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized spatio-temporal-spectral integrated fusion for soil moisture downscaling\",\"authors\":\"Menghui Jiang , Huanfeng Shen , Jie Li , Liangpei Zhang\",\"doi\":\"10.1016/j.isprsjprs.2024.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil moisture (SM) is one of the key land surface parameters, but the coarse spatial resolution of the passive microwave SM products constrains the precise monitoring of surface changes. The existing SM downscaling methods typically either utilize spatio-temporal information or leverage auxiliary parameters, without fully mining the complementary information between them. In this paper, a generalized spatio-temporal-spectral integrated fusion-based downscaling method is proposed to fully utilize the complementary features between multi-source auxiliary parameters and multi-temporal SM data. Specifically, we define the spectral characteristic of geographic objects as an assemblage of diverse attribute characteristics at specific spatio-temporal locations and scales. Based on this, the SM-related auxiliary parameter data can be treated as the generalized spectral characteristics of SM, and a generalized spatio-temporal-spectral integrated fusion framework is proposed to integrate the spatio-temporal features of the SM products and the generalized spectral features from the auxiliary parameters to generate fine spatial resolution SM data with high quality. In addition, considering the high heterogeneity of multi-source data, the proposed framework is based on a spatio-temporal constrained cycle generative adversarial network (STC-CycleGAN). The proposed STC-CycleGAN network comprises a forward integrated fusion stage and a backward spatio-temporal constraint stage, between which spatio-temporal cycle-consistent constraints are formed. Numerous experiments were conducted on Soil Moisture Active Passive (SMAP) SM products. The qualitative, quantitative, and in-situ site verification results demonstrate the capability of the proposed method to mine the complementary information of multi-source data and achieve high-accuracy downscaling of global daily SM data from 36 km to 9 km.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 70-86\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003903\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003903","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
土壤水分(SM)是关键的地表参数之一,但被动微波土壤水分产品的空间分辨率较低,限制了对地表变化的精确监测。现有的土壤水分降尺度方法通常要么利用时空信息,要么利用辅助参数,没有充分挖掘它们之间的互补信息。本文提出了一种基于广义时空-光谱综合融合的降尺度方法,以充分利用多源辅助参数与多时空 SM 数据之间的互补特征。具体来说,我们将地理对象的光谱特征定义为特定时空位置和尺度上各种属性特征的集合。在此基础上,与 SM 相关的辅助参数数据可被视为 SM 的广义光谱特征,并提出了广义时空-光谱综合融合框架,以整合 SM 产品的时空特征和辅助参数的广义光谱特征,生成高质量的精细空间分辨率 SM 数据。此外,考虑到多源数据的高度异质性,提出的框架基于时空约束循环生成对抗网络(STC-CycleGAN)。所提出的 STC-CycleGAN 网络包括一个前向综合融合阶段和一个后向时空约束阶段,在这两个阶段之间形成时空周期一致性约束。在土壤水分主动被动(SMAP)SM 产品上进行了大量实验。定性、定量和现场验证结果表明,所提出的方法能够挖掘多源数据的互补信息,实现从 36 千米到 9 千米的全球每日土壤水分数据的高精度降尺度。
Generalized spatio-temporal-spectral integrated fusion for soil moisture downscaling
Soil moisture (SM) is one of the key land surface parameters, but the coarse spatial resolution of the passive microwave SM products constrains the precise monitoring of surface changes. The existing SM downscaling methods typically either utilize spatio-temporal information or leverage auxiliary parameters, without fully mining the complementary information between them. In this paper, a generalized spatio-temporal-spectral integrated fusion-based downscaling method is proposed to fully utilize the complementary features between multi-source auxiliary parameters and multi-temporal SM data. Specifically, we define the spectral characteristic of geographic objects as an assemblage of diverse attribute characteristics at specific spatio-temporal locations and scales. Based on this, the SM-related auxiliary parameter data can be treated as the generalized spectral characteristics of SM, and a generalized spatio-temporal-spectral integrated fusion framework is proposed to integrate the spatio-temporal features of the SM products and the generalized spectral features from the auxiliary parameters to generate fine spatial resolution SM data with high quality. In addition, considering the high heterogeneity of multi-source data, the proposed framework is based on a spatio-temporal constrained cycle generative adversarial network (STC-CycleGAN). The proposed STC-CycleGAN network comprises a forward integrated fusion stage and a backward spatio-temporal constraint stage, between which spatio-temporal cycle-consistent constraints are formed. Numerous experiments were conducted on Soil Moisture Active Passive (SMAP) SM products. The qualitative, quantitative, and in-situ site verification results demonstrate the capability of the proposed method to mine the complementary information of multi-source data and achieve high-accuracy downscaling of global daily SM data from 36 km to 9 km.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.