Muhammad Altaf Nazir , Zainab Shafiq , Sami Ullah , Aziz ur Rehman , Tayyaba Najam , Mostafa A. Iismail , Rashid Iqbal , P. Rosaiah , Bhargav Akkinepally , Syed Shoaib Ahmad Shah
{"title":"多孔金属/共价有机框架材料:顺式二元醇化合物的富集和分离研究进展","authors":"Muhammad Altaf Nazir , Zainab Shafiq , Sami Ullah , Aziz ur Rehman , Tayyaba Najam , Mostafa A. Iismail , Rashid Iqbal , P. Rosaiah , Bhargav Akkinepally , Syed Shoaib Ahmad Shah","doi":"10.1016/j.jtice.2024.105805","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Boric acid may react with <em>cis</em> covalently bound molecules to produce stable cyclic esters of 5 or 6 members, when exposed to an alkaline environment. In an acidic environment, the cyclic ester opens and releases the cis-diol compound. For these reasons, the synthesis and design of boron affinity materials that exhibit excellent selectivity, efficiency, and enrichment performance have drawn a lot of interest. Scientists have recently created a variety of boron affinity materials that enable the production of highly selectively enriched cis-diol molecules. The chromatographic separations and preparation of samples in processing regions make extensive use of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their outstanding thermal and chemical stability, extremely porous, significant specific surface area, adjustable pore size and variable framework structure.</div></div><div><h3>Methods</h3><div>To create MOFs and COFs materials with selectivity for cis-diol molecules, boric acid-modified MOFs and COFs of diverse structures and kinds have been developed. The forms, synthesis pathways, and uses of boric acid-modified MOFs and COFs, including \"metal ligand-fragment co-assembly\" and \"post-synthetic modification,\" are discussed in this review. It also focuses on the \"bottom-up\" modification method of porous materials with boric acid functionality.</div></div><div><h3>Significant Findings</h3><div>This review mainly summarizes the advancement of boric acid-modified MOFs and COFs materials and how they are used in biological and chemical research. Additionally, it compares the benefits, drawbacks, and advantages of MOFs and COFs which are boric acid-functionalized. This article aims to provide researchers an extensive knowledge of the current status of the research on materials with porous organic frameworks functionalized with boric acid, help them grasp concepts and methods of synthesis, offer some theoretical direction and technical assistance for their applications, and facilitate the development of porous organic frameworks functionalized with boric acid.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105805"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous metal/covalent organic framework materials: Research progress on enrichment and separation of cis-diol compounds\",\"authors\":\"Muhammad Altaf Nazir , Zainab Shafiq , Sami Ullah , Aziz ur Rehman , Tayyaba Najam , Mostafa A. Iismail , Rashid Iqbal , P. Rosaiah , Bhargav Akkinepally , Syed Shoaib Ahmad Shah\",\"doi\":\"10.1016/j.jtice.2024.105805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Boric acid may react with <em>cis</em> covalently bound molecules to produce stable cyclic esters of 5 or 6 members, when exposed to an alkaline environment. In an acidic environment, the cyclic ester opens and releases the cis-diol compound. For these reasons, the synthesis and design of boron affinity materials that exhibit excellent selectivity, efficiency, and enrichment performance have drawn a lot of interest. Scientists have recently created a variety of boron affinity materials that enable the production of highly selectively enriched cis-diol molecules. The chromatographic separations and preparation of samples in processing regions make extensive use of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their outstanding thermal and chemical stability, extremely porous, significant specific surface area, adjustable pore size and variable framework structure.</div></div><div><h3>Methods</h3><div>To create MOFs and COFs materials with selectivity for cis-diol molecules, boric acid-modified MOFs and COFs of diverse structures and kinds have been developed. The forms, synthesis pathways, and uses of boric acid-modified MOFs and COFs, including \\\"metal ligand-fragment co-assembly\\\" and \\\"post-synthetic modification,\\\" are discussed in this review. It also focuses on the \\\"bottom-up\\\" modification method of porous materials with boric acid functionality.</div></div><div><h3>Significant Findings</h3><div>This review mainly summarizes the advancement of boric acid-modified MOFs and COFs materials and how they are used in biological and chemical research. Additionally, it compares the benefits, drawbacks, and advantages of MOFs and COFs which are boric acid-functionalized. This article aims to provide researchers an extensive knowledge of the current status of the research on materials with porous organic frameworks functionalized with boric acid, help them grasp concepts and methods of synthesis, offer some theoretical direction and technical assistance for their applications, and facilitate the development of porous organic frameworks functionalized with boric acid.</div></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"165 \",\"pages\":\"Article 105805\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024004632\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004632","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Porous metal/covalent organic framework materials: Research progress on enrichment and separation of cis-diol compounds
Background
Boric acid may react with cis covalently bound molecules to produce stable cyclic esters of 5 or 6 members, when exposed to an alkaline environment. In an acidic environment, the cyclic ester opens and releases the cis-diol compound. For these reasons, the synthesis and design of boron affinity materials that exhibit excellent selectivity, efficiency, and enrichment performance have drawn a lot of interest. Scientists have recently created a variety of boron affinity materials that enable the production of highly selectively enriched cis-diol molecules. The chromatographic separations and preparation of samples in processing regions make extensive use of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their outstanding thermal and chemical stability, extremely porous, significant specific surface area, adjustable pore size and variable framework structure.
Methods
To create MOFs and COFs materials with selectivity for cis-diol molecules, boric acid-modified MOFs and COFs of diverse structures and kinds have been developed. The forms, synthesis pathways, and uses of boric acid-modified MOFs and COFs, including "metal ligand-fragment co-assembly" and "post-synthetic modification," are discussed in this review. It also focuses on the "bottom-up" modification method of porous materials with boric acid functionality.
Significant Findings
This review mainly summarizes the advancement of boric acid-modified MOFs and COFs materials and how they are used in biological and chemical research. Additionally, it compares the benefits, drawbacks, and advantages of MOFs and COFs which are boric acid-functionalized. This article aims to provide researchers an extensive knowledge of the current status of the research on materials with porous organic frameworks functionalized with boric acid, help them grasp concepts and methods of synthesis, offer some theoretical direction and technical assistance for their applications, and facilitate the development of porous organic frameworks functionalized with boric acid.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.