原位固结自动纤维铺放热塑性复合材料的面内特性

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2024-10-15 DOI:10.1016/j.compositesa.2024.108525
{"title":"原位固结自动纤维铺放热塑性复合材料的面内特性","authors":"","doi":"10.1016/j.compositesa.2024.108525","DOIUrl":null,"url":null,"abstract":"<div><div>Automated fiber placement (AFP) has been employed to manufacture aerospace structures for decades, with a recent focus on thermoplastic composites (TPCs). The in-situ consolidation AFP of TPCs is pursued as an energy-efficient additive manufacturing (AM) approach for fabricating composite structures. This work compares the in-plane mechanical properties of in-situ consolidated coupons with those of compression molded counterparts to provide new insights into their failure mechanics and processing-structure relationships. Tensile and compressive properties along the fiber and transverse directions, in-plane shear properties, and short beam strength were measured for all samples. Failure modes and mechanics in tested coupons were related to AFP defects and processing, i.e., resultant crystallinities, fiber misalignment, matrix mechanical properties, porosity, and fiber–matrix interfacial strength. The findings of this study can be used to guide the manufacturing of future TPC structures and potentially open new avenues for applications where post-processing is not feasible or reduced mechanical performance is acceptable.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-plane properties of an in-situ consolidated automated fiber placement thermoplastic composite\",\"authors\":\"\",\"doi\":\"10.1016/j.compositesa.2024.108525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automated fiber placement (AFP) has been employed to manufacture aerospace structures for decades, with a recent focus on thermoplastic composites (TPCs). The in-situ consolidation AFP of TPCs is pursued as an energy-efficient additive manufacturing (AM) approach for fabricating composite structures. This work compares the in-plane mechanical properties of in-situ consolidated coupons with those of compression molded counterparts to provide new insights into their failure mechanics and processing-structure relationships. Tensile and compressive properties along the fiber and transverse directions, in-plane shear properties, and short beam strength were measured for all samples. Failure modes and mechanics in tested coupons were related to AFP defects and processing, i.e., resultant crystallinities, fiber misalignment, matrix mechanical properties, porosity, and fiber–matrix interfacial strength. The findings of this study can be used to guide the manufacturing of future TPC structures and potentially open new avenues for applications where post-processing is not feasible or reduced mechanical performance is acceptable.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24005232\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,自动纤维铺放(AFP)一直被用于制造航空航天结构,最近的重点是热塑性复合材料(TPC)。热塑性复合材料的原位固结 AFP 是制造复合材料结构的一种高能效增材制造 (AM) 方法。这项研究比较了原位固结试样与压缩成型试样的面内力学性能,为了解其失效力学和加工-结构关系提供了新的视角。测量了所有样品沿纤维方向和横向的拉伸和压缩特性、面内剪切特性以及短梁强度。测试试样的失效模式和力学性能与 AFP 缺陷和加工过程有关,即结晶度、纤维错位、基体力学性能、孔隙率和纤维-基体界面强度。本研究的结果可用于指导未来 TPC 结构的制造,并有可能为后处理不可行或可接受降低机械性能的应用开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-plane properties of an in-situ consolidated automated fiber placement thermoplastic composite
Automated fiber placement (AFP) has been employed to manufacture aerospace structures for decades, with a recent focus on thermoplastic composites (TPCs). The in-situ consolidation AFP of TPCs is pursued as an energy-efficient additive manufacturing (AM) approach for fabricating composite structures. This work compares the in-plane mechanical properties of in-situ consolidated coupons with those of compression molded counterparts to provide new insights into their failure mechanics and processing-structure relationships. Tensile and compressive properties along the fiber and transverse directions, in-plane shear properties, and short beam strength were measured for all samples. Failure modes and mechanics in tested coupons were related to AFP defects and processing, i.e., resultant crystallinities, fiber misalignment, matrix mechanical properties, porosity, and fiber–matrix interfacial strength. The findings of this study can be used to guide the manufacturing of future TPC structures and potentially open new avenues for applications where post-processing is not feasible or reduced mechanical performance is acceptable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
Hierarchical hollow MnO/carbon fiber@WS2 composite material exhibits strong wideband electromagnetic wave attenuation Preparation of biconnected carbon fiber/Cu composites with excellent thermal and mechanical properties Editorial Board Fabrication of core–shell nickel ferrite@polypyrrole composite for broadband and efficient electromagnetic wave absorption Flexible conductive adhesives with high conductivity and infrared stealth performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1