{"title":"原位固结自动纤维铺放热塑性复合材料的面内特性","authors":"","doi":"10.1016/j.compositesa.2024.108525","DOIUrl":null,"url":null,"abstract":"<div><div>Automated fiber placement (AFP) has been employed to manufacture aerospace structures for decades, with a recent focus on thermoplastic composites (TPCs). The in-situ consolidation AFP of TPCs is pursued as an energy-efficient additive manufacturing (AM) approach for fabricating composite structures. This work compares the in-plane mechanical properties of in-situ consolidated coupons with those of compression molded counterparts to provide new insights into their failure mechanics and processing-structure relationships. Tensile and compressive properties along the fiber and transverse directions, in-plane shear properties, and short beam strength were measured for all samples. Failure modes and mechanics in tested coupons were related to AFP defects and processing, i.e., resultant crystallinities, fiber misalignment, matrix mechanical properties, porosity, and fiber–matrix interfacial strength. The findings of this study can be used to guide the manufacturing of future TPC structures and potentially open new avenues for applications where post-processing is not feasible or reduced mechanical performance is acceptable.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-plane properties of an in-situ consolidated automated fiber placement thermoplastic composite\",\"authors\":\"\",\"doi\":\"10.1016/j.compositesa.2024.108525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automated fiber placement (AFP) has been employed to manufacture aerospace structures for decades, with a recent focus on thermoplastic composites (TPCs). The in-situ consolidation AFP of TPCs is pursued as an energy-efficient additive manufacturing (AM) approach for fabricating composite structures. This work compares the in-plane mechanical properties of in-situ consolidated coupons with those of compression molded counterparts to provide new insights into their failure mechanics and processing-structure relationships. Tensile and compressive properties along the fiber and transverse directions, in-plane shear properties, and short beam strength were measured for all samples. Failure modes and mechanics in tested coupons were related to AFP defects and processing, i.e., resultant crystallinities, fiber misalignment, matrix mechanical properties, porosity, and fiber–matrix interfacial strength. The findings of this study can be used to guide the manufacturing of future TPC structures and potentially open new avenues for applications where post-processing is not feasible or reduced mechanical performance is acceptable.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24005232\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
In-plane properties of an in-situ consolidated automated fiber placement thermoplastic composite
Automated fiber placement (AFP) has been employed to manufacture aerospace structures for decades, with a recent focus on thermoplastic composites (TPCs). The in-situ consolidation AFP of TPCs is pursued as an energy-efficient additive manufacturing (AM) approach for fabricating composite structures. This work compares the in-plane mechanical properties of in-situ consolidated coupons with those of compression molded counterparts to provide new insights into their failure mechanics and processing-structure relationships. Tensile and compressive properties along the fiber and transverse directions, in-plane shear properties, and short beam strength were measured for all samples. Failure modes and mechanics in tested coupons were related to AFP defects and processing, i.e., resultant crystallinities, fiber misalignment, matrix mechanical properties, porosity, and fiber–matrix interfacial strength. The findings of this study can be used to guide the manufacturing of future TPC structures and potentially open new avenues for applications where post-processing is not feasible or reduced mechanical performance is acceptable.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.