{"title":"甲烷和煤尘混合物爆炸中 OH* 发射光谱特征和瞬态点火动力学实验研究","authors":"Siyu Tian , Botao Qin , Yanwei Zhang , Dong Ma , Jingde Xu","doi":"10.1016/j.psep.2024.10.068","DOIUrl":null,"url":null,"abstract":"<div><div>Combustible gases, dusts and their mixtures are widely present in human production and life,and the fire and explosion disasters caused by them pose a serious threat to the field of energy security applications. Studying the ignition process of mixtures is essential for disaster risk assessment and safety protection. In this work, the explosion characteristics and OH* emission spectra of the mixtures were experimentally tested by varying the fuel equivalence ratio ( ER ≈ 0.79 ∼ 1.71), and the evolution of the transient flow field structure during the ignition process was quantitatively analyzed using the schlieren image velocimetry method. The results indicate that the emission spectrum of OH* is closely correlated with the maximum explosion pressure, and the spectral intensity of OH* at 306.4 nm is consistent with the maximum rate of explosion pressure rise. The flow field during the ignition process of the mixtures shows that a small amount of coal dust (concentration≤30 g/m<sup>3</sup>) can significantly promote flame acceleration and instability as the methane concentration is in lean combustion or stoichiometric ratio. However, when the concentration of coal dust increases (concentration≥40 g/m<sup>3</sup>), coal dust will suppress flame acceleration and instability. For methane concentration in fuel-rich combustion state, coal dust always suppresses flame acceleration and instability. The experimental results contribute to a further understanding of gas and coal dust mixed explosions and provide a verification database for the construction of chemical kinetic mechanisms.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 669-679"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of OH* emission spectrum characteristics and transient ignition dynamics in methane and coal dust mixtures explosions\",\"authors\":\"Siyu Tian , Botao Qin , Yanwei Zhang , Dong Ma , Jingde Xu\",\"doi\":\"10.1016/j.psep.2024.10.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Combustible gases, dusts and their mixtures are widely present in human production and life,and the fire and explosion disasters caused by them pose a serious threat to the field of energy security applications. Studying the ignition process of mixtures is essential for disaster risk assessment and safety protection. In this work, the explosion characteristics and OH* emission spectra of the mixtures were experimentally tested by varying the fuel equivalence ratio ( ER ≈ 0.79 ∼ 1.71), and the evolution of the transient flow field structure during the ignition process was quantitatively analyzed using the schlieren image velocimetry method. The results indicate that the emission spectrum of OH* is closely correlated with the maximum explosion pressure, and the spectral intensity of OH* at 306.4 nm is consistent with the maximum rate of explosion pressure rise. The flow field during the ignition process of the mixtures shows that a small amount of coal dust (concentration≤30 g/m<sup>3</sup>) can significantly promote flame acceleration and instability as the methane concentration is in lean combustion or stoichiometric ratio. However, when the concentration of coal dust increases (concentration≥40 g/m<sup>3</sup>), coal dust will suppress flame acceleration and instability. For methane concentration in fuel-rich combustion state, coal dust always suppresses flame acceleration and instability. The experimental results contribute to a further understanding of gas and coal dust mixed explosions and provide a verification database for the construction of chemical kinetic mechanisms.</div></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":\"192 \",\"pages\":\"Pages 669-679\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024013508\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024013508","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Experimental investigation of OH* emission spectrum characteristics and transient ignition dynamics in methane and coal dust mixtures explosions
Combustible gases, dusts and their mixtures are widely present in human production and life,and the fire and explosion disasters caused by them pose a serious threat to the field of energy security applications. Studying the ignition process of mixtures is essential for disaster risk assessment and safety protection. In this work, the explosion characteristics and OH* emission spectra of the mixtures were experimentally tested by varying the fuel equivalence ratio ( ER ≈ 0.79 ∼ 1.71), and the evolution of the transient flow field structure during the ignition process was quantitatively analyzed using the schlieren image velocimetry method. The results indicate that the emission spectrum of OH* is closely correlated with the maximum explosion pressure, and the spectral intensity of OH* at 306.4 nm is consistent with the maximum rate of explosion pressure rise. The flow field during the ignition process of the mixtures shows that a small amount of coal dust (concentration≤30 g/m3) can significantly promote flame acceleration and instability as the methane concentration is in lean combustion or stoichiometric ratio. However, when the concentration of coal dust increases (concentration≥40 g/m3), coal dust will suppress flame acceleration and instability. For methane concentration in fuel-rich combustion state, coal dust always suppresses flame acceleration and instability. The experimental results contribute to a further understanding of gas and coal dust mixed explosions and provide a verification database for the construction of chemical kinetic mechanisms.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.