高强度代谢β钛合金拉伸性能的各向异性

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-10-22 DOI:10.1016/j.matdes.2024.113401
Tiphaine Giroud, Patrick Villechaise, Azdine Naït-Ali, David Mellier, Samuel Hémery
{"title":"高强度代谢β钛合金拉伸性能的各向异性","authors":"Tiphaine Giroud,&nbsp;Patrick Villechaise,&nbsp;Azdine Naït-Ali,&nbsp;David Mellier,&nbsp;Samuel Hémery","doi":"10.1016/j.matdes.2024.113401","DOIUrl":null,"url":null,"abstract":"<div><div>High strength metastable β titanium alloys are widely employed in the aircraft industry due to their outstanding strength-to-weight ratio. While components can endure complex in-service mechanical loading, the anisotropy in tensile properties has been the subject of limited attention. In this study, its origin was investigated focusing on the role played by millimeter scale β grains as they were recently identified as a source of heterogeneous deformation. Tensile properties of Ti-10V-2Fe-3Al processed via different thermomechanical routes were assessed using multiple sampling directions. In particular, elongation values were observed to vary significantly depending on the testing direction. A combination of SEM, EBSD, µ-CT and in-situ DIC during tensile tests was employed to clarify the underlying causes of this behavior. Substantial differences in strain heterogeneity and localization were found related to features of β grains, including their crystallographic and morphologic orientations. Furthermore, multiple fracture mechanisms were observed to derive from the differences in deformation behavior, and eventually compete to trigger specimen failure. Elongation values are then determined by both the degree of strain heterogeneity and the operating fracture mechanisms. These findings provide a new understanding of the role of the microstructure in the tensile behavior of high strength metastable β titanium alloys.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113401"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropy in tensile properties of a high strength metastable β titanium alloy\",\"authors\":\"Tiphaine Giroud,&nbsp;Patrick Villechaise,&nbsp;Azdine Naït-Ali,&nbsp;David Mellier,&nbsp;Samuel Hémery\",\"doi\":\"10.1016/j.matdes.2024.113401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High strength metastable β titanium alloys are widely employed in the aircraft industry due to their outstanding strength-to-weight ratio. While components can endure complex in-service mechanical loading, the anisotropy in tensile properties has been the subject of limited attention. In this study, its origin was investigated focusing on the role played by millimeter scale β grains as they were recently identified as a source of heterogeneous deformation. Tensile properties of Ti-10V-2Fe-3Al processed via different thermomechanical routes were assessed using multiple sampling directions. In particular, elongation values were observed to vary significantly depending on the testing direction. A combination of SEM, EBSD, µ-CT and in-situ DIC during tensile tests was employed to clarify the underlying causes of this behavior. Substantial differences in strain heterogeneity and localization were found related to features of β grains, including their crystallographic and morphologic orientations. Furthermore, multiple fracture mechanisms were observed to derive from the differences in deformation behavior, and eventually compete to trigger specimen failure. Elongation values are then determined by both the degree of strain heterogeneity and the operating fracture mechanisms. These findings provide a new understanding of the role of the microstructure in the tensile behavior of high strength metastable β titanium alloys.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"247 \",\"pages\":\"Article 113401\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007767\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007767","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高强度可变型 β 钛合金因其出色的强度重量比而被广泛应用于航空工业。虽然部件可以承受复杂的在役机械载荷,但拉伸性能中的各向异性却很少受到关注。在本研究中,我们重点研究了毫米级 β 晶粒的作用,因为它们最近被确定为异质变形的来源。使用多个取样方向评估了通过不同热机械方法加工的 Ti-10V-2Fe-3Al 的拉伸特性。特别是,观察到伸长值因测试方向的不同而变化很大。在拉伸试验过程中,结合使用了 SEM、EBSD、µ-CT 和原位 DIC,以阐明这种行为的根本原因。研究发现,应变异质性和定位的巨大差异与 β 晶粒的特征有关,包括其晶体学和形态学方向。此外,还观察到多种断裂机制源于变形行为的差异,并最终竞相引发试样失效。伸长值由应变异质性程度和运行中的断裂机制共同决定。这些发现使人们对微观结构在高强度可转移 β 钛合金拉伸行为中的作用有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anisotropy in tensile properties of a high strength metastable β titanium alloy
High strength metastable β titanium alloys are widely employed in the aircraft industry due to their outstanding strength-to-weight ratio. While components can endure complex in-service mechanical loading, the anisotropy in tensile properties has been the subject of limited attention. In this study, its origin was investigated focusing on the role played by millimeter scale β grains as they were recently identified as a source of heterogeneous deformation. Tensile properties of Ti-10V-2Fe-3Al processed via different thermomechanical routes were assessed using multiple sampling directions. In particular, elongation values were observed to vary significantly depending on the testing direction. A combination of SEM, EBSD, µ-CT and in-situ DIC during tensile tests was employed to clarify the underlying causes of this behavior. Substantial differences in strain heterogeneity and localization were found related to features of β grains, including their crystallographic and morphologic orientations. Furthermore, multiple fracture mechanisms were observed to derive from the differences in deformation behavior, and eventually compete to trigger specimen failure. Elongation values are then determined by both the degree of strain heterogeneity and the operating fracture mechanisms. These findings provide a new understanding of the role of the microstructure in the tensile behavior of high strength metastable β titanium alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Tailoring nanotwinned Cu interlayers for localizing anisotropic plastic deformation during low energy input ultrasonic welding of robust Cu-Cu joints Hybrid fibre-reinforced cementitious composites with short polyethylene and continue carbon fibres: Influence of roving impregnation on tensile and cracking behaviour Investigate on dissimilar welding of high-entropy alloy and 310S with various fillers In situ X-ray imaging and quantitative analysis of balling during laser powder bed fusion of 316L at high layer thickness Design of a lightweight broadband vibration reduction structure with embedded acoustic black holes in viscoelastic damping materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1