K. Vijaya Bhaskar , Mohammad Rashed , K. Subrahmanya Bhat , Jechan Lee , Ki-Hyun Kim , Kezia Buruga
{"title":"作为活性药物成分合成实用工具的连续流微反应器","authors":"K. Vijaya Bhaskar , Mohammad Rashed , K. Subrahmanya Bhat , Jechan Lee , Ki-Hyun Kim , Kezia Buruga","doi":"10.1016/j.psep.2024.09.122","DOIUrl":null,"url":null,"abstract":"<div><div>Continuous flow processing has become a key technology to maximize the capabilities of chemical syntheses. Numerous new tactics have been devised to synthesize various chemicals including active pharmaceutical ingredients (APIs) via a continuous flow system using microreactors. This review aims to illustrate the holistic system approach and diverse applications of continuous flow microreactors for the synthesis of APIs (with respect to type, design, and fabrication). This review also highlights the applicability of continuous flow microreactors in the synthesis of APIs in contrast to conventional batch-type methods along with a discussion of their merits and demerits. Overall, this review is expected to offer valuable insights into the utility of continuous flow microreactor technology for the upscaled production of commercially feasible APIs.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 437-449"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A continuous flow microreactor as a practical tool for the synthesis of active pharmaceutical ingredients\",\"authors\":\"K. Vijaya Bhaskar , Mohammad Rashed , K. Subrahmanya Bhat , Jechan Lee , Ki-Hyun Kim , Kezia Buruga\",\"doi\":\"10.1016/j.psep.2024.09.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Continuous flow processing has become a key technology to maximize the capabilities of chemical syntheses. Numerous new tactics have been devised to synthesize various chemicals including active pharmaceutical ingredients (APIs) via a continuous flow system using microreactors. This review aims to illustrate the holistic system approach and diverse applications of continuous flow microreactors for the synthesis of APIs (with respect to type, design, and fabrication). This review also highlights the applicability of continuous flow microreactors in the synthesis of APIs in contrast to conventional batch-type methods along with a discussion of their merits and demerits. Overall, this review is expected to offer valuable insights into the utility of continuous flow microreactor technology for the upscaled production of commercially feasible APIs.</div></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":\"192 \",\"pages\":\"Pages 437-449\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095758202401262X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095758202401262X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A continuous flow microreactor as a practical tool for the synthesis of active pharmaceutical ingredients
Continuous flow processing has become a key technology to maximize the capabilities of chemical syntheses. Numerous new tactics have been devised to synthesize various chemicals including active pharmaceutical ingredients (APIs) via a continuous flow system using microreactors. This review aims to illustrate the holistic system approach and diverse applications of continuous flow microreactors for the synthesis of APIs (with respect to type, design, and fabrication). This review also highlights the applicability of continuous flow microreactors in the synthesis of APIs in contrast to conventional batch-type methods along with a discussion of their merits and demerits. Overall, this review is expected to offer valuable insights into the utility of continuous flow microreactor technology for the upscaled production of commercially feasible APIs.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.