Marcelo V. Flamarion , Efim Pelinovsky , Denis V. Makarov
{"title":"随机驱动力影响下的波场伯格斯方程","authors":"Marcelo V. Flamarion , Efim Pelinovsky , Denis V. Makarov","doi":"10.1016/j.physleta.2024.130000","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we examine the classical Burgers equation and investigate the effects of a random force on the wave field. Two scenarios are considered: the impact of a random force on different wave fields within the viscous Burgers equation and the effect of a periodic random force in the inviscid Burgers equation. For the first case, we demonstrate that the random force primarily causes wave fronts to increase or decrease depending on the dispersion parameter. For an initially deformed sinusoidal wave, the external force causes the mean wave field to spread out and dampen over time. The Cole-Hopf transformation is also used to obtain asymptotically the averaged wave field in certain regimes. For the inviscid problem, we assume the random force to be periodic with random phase to show that the mean wave field corresponds to the solution of the classical inviscid Burgers equation without external forces.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"527 ","pages":"Article 130000"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave fields under the influence of a random-driven force: The Burgers equation\",\"authors\":\"Marcelo V. Flamarion , Efim Pelinovsky , Denis V. Makarov\",\"doi\":\"10.1016/j.physleta.2024.130000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we examine the classical Burgers equation and investigate the effects of a random force on the wave field. Two scenarios are considered: the impact of a random force on different wave fields within the viscous Burgers equation and the effect of a periodic random force in the inviscid Burgers equation. For the first case, we demonstrate that the random force primarily causes wave fronts to increase or decrease depending on the dispersion parameter. For an initially deformed sinusoidal wave, the external force causes the mean wave field to spread out and dampen over time. The Cole-Hopf transformation is also used to obtain asymptotically the averaged wave field in certain regimes. For the inviscid problem, we assume the random force to be periodic with random phase to show that the mean wave field corresponds to the solution of the classical inviscid Burgers equation without external forces.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"527 \",\"pages\":\"Article 130000\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960124006947\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124006947","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Wave fields under the influence of a random-driven force: The Burgers equation
In this work, we examine the classical Burgers equation and investigate the effects of a random force on the wave field. Two scenarios are considered: the impact of a random force on different wave fields within the viscous Burgers equation and the effect of a periodic random force in the inviscid Burgers equation. For the first case, we demonstrate that the random force primarily causes wave fronts to increase or decrease depending on the dispersion parameter. For an initially deformed sinusoidal wave, the external force causes the mean wave field to spread out and dampen over time. The Cole-Hopf transformation is also used to obtain asymptotically the averaged wave field in certain regimes. For the inviscid problem, we assume the random force to be periodic with random phase to show that the mean wave field corresponds to the solution of the classical inviscid Burgers equation without external forces.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.