{"title":"金红石型 GeO2 的拓扑相工程与应变","authors":"Shuaihui Guo , Xiaoxiong Wang","doi":"10.1016/j.physleta.2024.129989","DOIUrl":null,"url":null,"abstract":"<div><div>Nodal-line semimetals serve as the parent phase for various topological states. By manipulating spin-orbit coupling (SOC), time-reversal symmetry, or spatial inversion symmetry, a Dirac nodal-line semimetal can transition into a 3D Dirac semimetal, Weyl semimetal, or topological insulator.</div><div>In this study, we present the topological phase engineering of rutile GeO<sub>2</sub> under strain through first-principles calculations. Without considering SOC effect, applying tensile strain to GeO<sub>2</sub> induces a transformation from a trivial insulator to a Dirac nodal-line semimetal, characterized by two orthogonal and interconnected Dirac nodal rings protected by mirror symmetry. When SOC is taken into account, the band degeneracy persists only at two points, resulting in a 3D Dirac semimetal. Nonetheless, due to the negligible strength of SOC in GeO<sub>2</sub>, its nodal-line semimetal properties remain largely intact even after including SOC effects.</div><div>Our findings provide valuable insights for the topological phase engineering and potential spintronics applications of GeO<sub>2</sub>.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"527 ","pages":"Article 129989"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological phase engineering of rutile GeO2 with strain\",\"authors\":\"Shuaihui Guo , Xiaoxiong Wang\",\"doi\":\"10.1016/j.physleta.2024.129989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nodal-line semimetals serve as the parent phase for various topological states. By manipulating spin-orbit coupling (SOC), time-reversal symmetry, or spatial inversion symmetry, a Dirac nodal-line semimetal can transition into a 3D Dirac semimetal, Weyl semimetal, or topological insulator.</div><div>In this study, we present the topological phase engineering of rutile GeO<sub>2</sub> under strain through first-principles calculations. Without considering SOC effect, applying tensile strain to GeO<sub>2</sub> induces a transformation from a trivial insulator to a Dirac nodal-line semimetal, characterized by two orthogonal and interconnected Dirac nodal rings protected by mirror symmetry. When SOC is taken into account, the band degeneracy persists only at two points, resulting in a 3D Dirac semimetal. Nonetheless, due to the negligible strength of SOC in GeO<sub>2</sub>, its nodal-line semimetal properties remain largely intact even after including SOC effects.</div><div>Our findings provide valuable insights for the topological phase engineering and potential spintronics applications of GeO<sub>2</sub>.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"527 \",\"pages\":\"Article 129989\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960124006832\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124006832","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Topological phase engineering of rutile GeO2 with strain
Nodal-line semimetals serve as the parent phase for various topological states. By manipulating spin-orbit coupling (SOC), time-reversal symmetry, or spatial inversion symmetry, a Dirac nodal-line semimetal can transition into a 3D Dirac semimetal, Weyl semimetal, or topological insulator.
In this study, we present the topological phase engineering of rutile GeO2 under strain through first-principles calculations. Without considering SOC effect, applying tensile strain to GeO2 induces a transformation from a trivial insulator to a Dirac nodal-line semimetal, characterized by two orthogonal and interconnected Dirac nodal rings protected by mirror symmetry. When SOC is taken into account, the band degeneracy persists only at two points, resulting in a 3D Dirac semimetal. Nonetheless, due to the negligible strength of SOC in GeO2, its nodal-line semimetal properties remain largely intact even after including SOC effects.
Our findings provide valuable insights for the topological phase engineering and potential spintronics applications of GeO2.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.