金红石型 GeO2 的拓扑相工程与应变

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physics Letters A Pub Date : 2024-10-17 DOI:10.1016/j.physleta.2024.129989
Shuaihui Guo , Xiaoxiong Wang
{"title":"金红石型 GeO2 的拓扑相工程与应变","authors":"Shuaihui Guo ,&nbsp;Xiaoxiong Wang","doi":"10.1016/j.physleta.2024.129989","DOIUrl":null,"url":null,"abstract":"<div><div>Nodal-line semimetals serve as the parent phase for various topological states. By manipulating spin-orbit coupling (SOC), time-reversal symmetry, or spatial inversion symmetry, a Dirac nodal-line semimetal can transition into a 3D Dirac semimetal, Weyl semimetal, or topological insulator.</div><div>In this study, we present the topological phase engineering of rutile GeO<sub>2</sub> under strain through first-principles calculations. Without considering SOC effect, applying tensile strain to GeO<sub>2</sub> induces a transformation from a trivial insulator to a Dirac nodal-line semimetal, characterized by two orthogonal and interconnected Dirac nodal rings protected by mirror symmetry. When SOC is taken into account, the band degeneracy persists only at two points, resulting in a 3D Dirac semimetal. Nonetheless, due to the negligible strength of SOC in GeO<sub>2</sub>, its nodal-line semimetal properties remain largely intact even after including SOC effects.</div><div>Our findings provide valuable insights for the topological phase engineering and potential spintronics applications of GeO<sub>2</sub>.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"527 ","pages":"Article 129989"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological phase engineering of rutile GeO2 with strain\",\"authors\":\"Shuaihui Guo ,&nbsp;Xiaoxiong Wang\",\"doi\":\"10.1016/j.physleta.2024.129989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nodal-line semimetals serve as the parent phase for various topological states. By manipulating spin-orbit coupling (SOC), time-reversal symmetry, or spatial inversion symmetry, a Dirac nodal-line semimetal can transition into a 3D Dirac semimetal, Weyl semimetal, or topological insulator.</div><div>In this study, we present the topological phase engineering of rutile GeO<sub>2</sub> under strain through first-principles calculations. Without considering SOC effect, applying tensile strain to GeO<sub>2</sub> induces a transformation from a trivial insulator to a Dirac nodal-line semimetal, characterized by two orthogonal and interconnected Dirac nodal rings protected by mirror symmetry. When SOC is taken into account, the band degeneracy persists only at two points, resulting in a 3D Dirac semimetal. Nonetheless, due to the negligible strength of SOC in GeO<sub>2</sub>, its nodal-line semimetal properties remain largely intact even after including SOC effects.</div><div>Our findings provide valuable insights for the topological phase engineering and potential spintronics applications of GeO<sub>2</sub>.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"527 \",\"pages\":\"Article 129989\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960124006832\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124006832","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

节点线半金属是各种拓扑态的母相。通过操纵自旋轨道耦合(SOC)、时间反转对称性或空间反转对称性,狄拉克结点线半金属可以转变为三维狄拉克半金属、韦尔半金属或拓扑绝缘体。在本研究中,我们通过第一性原理计算介绍了金红石GeO2在应变下的拓扑相工程。在不考虑SOC效应的情况下,对二氧化金红石施加拉伸应变会引起从微不足道的绝缘体到狄拉克节点线半金属的转变,狄拉克节点线半金属的特征是两个正交且相互连接的狄拉克节点环受镜像对称性的保护。当考虑到 SOC 时,带变性只在两个点上持续存在,从而形成三维狄拉克半金属。我们的发现为 GeO2 的拓扑相工程和潜在的自旋电子学应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological phase engineering of rutile GeO2 with strain
Nodal-line semimetals serve as the parent phase for various topological states. By manipulating spin-orbit coupling (SOC), time-reversal symmetry, or spatial inversion symmetry, a Dirac nodal-line semimetal can transition into a 3D Dirac semimetal, Weyl semimetal, or topological insulator.
In this study, we present the topological phase engineering of rutile GeO2 under strain through first-principles calculations. Without considering SOC effect, applying tensile strain to GeO2 induces a transformation from a trivial insulator to a Dirac nodal-line semimetal, characterized by two orthogonal and interconnected Dirac nodal rings protected by mirror symmetry. When SOC is taken into account, the band degeneracy persists only at two points, resulting in a 3D Dirac semimetal. Nonetheless, due to the negligible strength of SOC in GeO2, its nodal-line semimetal properties remain largely intact even after including SOC effects.
Our findings provide valuable insights for the topological phase engineering and potential spintronics applications of GeO2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
期刊最新文献
Editorial Board On an extended semi-discrete matrix coupled dispersionless system: Darboux transformation and explicit solutions DASH: A novel method for dynamically selecting key nodes to spread information rapidly under the graph burning model High thermal energy storage of the two-dimensional Al2Te3 semiconductor: DFT study of stability, electronic, phonon, thermal, and optical properties based on GGA and HSE06 Emergency evacuation dynamics based on evolutionary game theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1