高能激光冲击强化镍基超合金变形特性和腐蚀性能的定量分析

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS Surface & Coatings Technology Pub Date : 2024-10-30 DOI:10.1016/j.surfcoat.2024.131470
Yarramilli Vamsi Apuroop , Sanjay Raj , Malar Vadani , Sabeur Msolli , Pooja Gupta , Sanjay Rai , Niroj Maharjan , Ayan Bhowmik
{"title":"高能激光冲击强化镍基超合金变形特性和腐蚀性能的定量分析","authors":"Yarramilli Vamsi Apuroop ,&nbsp;Sanjay Raj ,&nbsp;Malar Vadani ,&nbsp;Sabeur Msolli ,&nbsp;Pooja Gupta ,&nbsp;Sanjay Rai ,&nbsp;Niroj Maharjan ,&nbsp;Ayan Bhowmik","doi":"10.1016/j.surfcoat.2024.131470","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the influence of high-energy laser shock peening (LSP) using 7 J and 10 J pulse energies on the sub-surface deformation characteristics of Inconel 718 superalloy. High-magnitude compressive residual stresses were induced into the samples after LSP with large residual stress depths of the order of 2 mm – the experimental observations were in good agreement with finite element analyses of the LSP process. The propagation of intense shock waves led to increased strain hardening and dislocation densities that were experimentally quantified by synchrotron diffraction and transmission electron microscopy. Microscopic analyses revealed highly refined grain structure only at the surface without much refinement observed in the residual depth region. Alongside a high degree of strain hardening, profuse amount of adiabatic shear bands was observed in the hardened depth, indicative of simultaneous strain localisation under such high laser pulse energy. These bands occurred along common slip planes in the Ni γ-matrix and could be potential areas of instability leading to failure. The LSP-treated samples exhibited improved corrosion resistance, with higher laser pulse energy peened samples performing better.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131470"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of deformation characteristics and corrosion properties of high energy laser shock peened Ni-based superalloy\",\"authors\":\"Yarramilli Vamsi Apuroop ,&nbsp;Sanjay Raj ,&nbsp;Malar Vadani ,&nbsp;Sabeur Msolli ,&nbsp;Pooja Gupta ,&nbsp;Sanjay Rai ,&nbsp;Niroj Maharjan ,&nbsp;Ayan Bhowmik\",\"doi\":\"10.1016/j.surfcoat.2024.131470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the influence of high-energy laser shock peening (LSP) using 7 J and 10 J pulse energies on the sub-surface deformation characteristics of Inconel 718 superalloy. High-magnitude compressive residual stresses were induced into the samples after LSP with large residual stress depths of the order of 2 mm – the experimental observations were in good agreement with finite element analyses of the LSP process. The propagation of intense shock waves led to increased strain hardening and dislocation densities that were experimentally quantified by synchrotron diffraction and transmission electron microscopy. Microscopic analyses revealed highly refined grain structure only at the surface without much refinement observed in the residual depth region. Alongside a high degree of strain hardening, profuse amount of adiabatic shear bands was observed in the hardened depth, indicative of simultaneous strain localisation under such high laser pulse energy. These bands occurred along common slip planes in the Ni γ-matrix and could be potential areas of instability leading to failure. The LSP-treated samples exhibited improved corrosion resistance, with higher laser pulse energy peened samples performing better.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"494 \",\"pages\":\"Article 131470\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224011010\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011010","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了使用 7 J 和 10 J 脉冲能量的高能激光冲击强化(LSP)对 Inconel 718 超合金表层下变形特性的影响。在 LSP 之后,样品中产生了高强度的压缩残余应力,残余应力深度达到 2 mm 左右--实验观察结果与 LSP 过程的有限元分析结果非常吻合。强烈冲击波的传播导致应变硬化和位错密度增加,同步辐射衍射和透射电子显微镜对其进行了实验量化。显微分析表明,晶粒结构仅在表面高度细化,在残余深度区域没有观察到明显的细化。除了高度应变硬化外,在硬化深度还观察到大量绝热剪切带,表明在如此高的激光脉冲能量下应变同时定位。这些剪切带沿着 Ni γ 基质中的共同滑移面出现,可能是导致失效的潜在不稳定区域。经过 LSP 处理的样品具有更好的耐腐蚀性,激光脉冲能量更高的强化样品性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative analysis of deformation characteristics and corrosion properties of high energy laser shock peened Ni-based superalloy
This study examines the influence of high-energy laser shock peening (LSP) using 7 J and 10 J pulse energies on the sub-surface deformation characteristics of Inconel 718 superalloy. High-magnitude compressive residual stresses were induced into the samples after LSP with large residual stress depths of the order of 2 mm – the experimental observations were in good agreement with finite element analyses of the LSP process. The propagation of intense shock waves led to increased strain hardening and dislocation densities that were experimentally quantified by synchrotron diffraction and transmission electron microscopy. Microscopic analyses revealed highly refined grain structure only at the surface without much refinement observed in the residual depth region. Alongside a high degree of strain hardening, profuse amount of adiabatic shear bands was observed in the hardened depth, indicative of simultaneous strain localisation under such high laser pulse energy. These bands occurred along common slip planes in the Ni γ-matrix and could be potential areas of instability leading to failure. The LSP-treated samples exhibited improved corrosion resistance, with higher laser pulse energy peened samples performing better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
期刊最新文献
Editorial Board Stability-enhanced (Cu-, Zn-)MOFs via (Cu, Zn)S composite strategy: A promising approach for oil-water separation A smart self-healing coating utilizing pH-responsive dual nanocontainers for corrosion protection of aluminum alloy Integrating TiNx to Fe-based amorphous coating by reactive plasma spray for ameliorating multi-scale mechanical behavior and corrosion-abrasion resistance Laser-zoned treatment of magnesium surfaces with predictable degradation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1