数据驱动的成本敏感提升树,用于可解释的银行系统性风险预测

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-10-25 DOI:10.1016/j.chaos.2024.115664
Meng Xia , Zhijie Wang , Wanan Liu
{"title":"数据驱动的成本敏感提升树,用于可解释的银行系统性风险预测","authors":"Meng Xia ,&nbsp;Zhijie Wang ,&nbsp;Wanan Liu","doi":"10.1016/j.chaos.2024.115664","DOIUrl":null,"url":null,"abstract":"<div><div>Systemic risk (SR) in the banking sector poses a significant threat to both the financial system and the real economy. Its inherent characteristics of nonlinearity, non-equilibrium, and interconnectedness make it challenging to analyze using conventional statistical methods. In this paper, a cost-sensitive gradient boosting tree algorithm, FLXGBoost, is proposed for predicting SR. FLXGBoost considers the boosted tree, XGBoost as the base framework, boosting trees as the fundamental framework, guaranteeing the robustness of SR prediction. Additionally, to tackle the challenge of extreme data imbalance prevalent in SR prediction tasks, a cost-aware loss function, focal loss, is embedded into the boosted tree to enable FLXGBoost a risk-aware fashion. Moreover, a tree-derived interpretable algorithm SHAP is incorporated into this cost-sensitive solution, making FLXGBoost an accurate and interpretable risk-aware model. Experimental results on a financial risk prediction dataset pertaining to banking SR evince the capacity of FLXGBoost to significantly reduce the misclassification rate of risk banks, thereby mitigating substantial losses attributed to erroneous predictions of risky scenarios. Moreover, compared with classical imbalanced machine learning-based SR prediction approaches, the diverse evaluation metrics of FLXGBoost show that it is a competitive solution for accurate SR prediction. Besides, the explanatory analysis further demonstrates that FLXGBoost is a promising solution to address the issue of biased predictions in imbalanced banking SR in the interpretation perspective.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115664"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data driven cost-sensitive boosted tree for interpretable banking systemic risk prediction\",\"authors\":\"Meng Xia ,&nbsp;Zhijie Wang ,&nbsp;Wanan Liu\",\"doi\":\"10.1016/j.chaos.2024.115664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Systemic risk (SR) in the banking sector poses a significant threat to both the financial system and the real economy. Its inherent characteristics of nonlinearity, non-equilibrium, and interconnectedness make it challenging to analyze using conventional statistical methods. In this paper, a cost-sensitive gradient boosting tree algorithm, FLXGBoost, is proposed for predicting SR. FLXGBoost considers the boosted tree, XGBoost as the base framework, boosting trees as the fundamental framework, guaranteeing the robustness of SR prediction. Additionally, to tackle the challenge of extreme data imbalance prevalent in SR prediction tasks, a cost-aware loss function, focal loss, is embedded into the boosted tree to enable FLXGBoost a risk-aware fashion. Moreover, a tree-derived interpretable algorithm SHAP is incorporated into this cost-sensitive solution, making FLXGBoost an accurate and interpretable risk-aware model. Experimental results on a financial risk prediction dataset pertaining to banking SR evince the capacity of FLXGBoost to significantly reduce the misclassification rate of risk banks, thereby mitigating substantial losses attributed to erroneous predictions of risky scenarios. Moreover, compared with classical imbalanced machine learning-based SR prediction approaches, the diverse evaluation metrics of FLXGBoost show that it is a competitive solution for accurate SR prediction. Besides, the explanatory analysis further demonstrates that FLXGBoost is a promising solution to address the issue of biased predictions in imbalanced banking SR in the interpretation perspective.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115664\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012165\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012165","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

银行业的系统性风险(SR)对金融体系和实体经济都构成了重大威胁。其固有的非线性、非平衡性和相互关联性等特点使其很难用传统的统计方法进行分析。本文提出了一种成本敏感梯度提升树算法 FLXGBoost,用于预测 SR。FLXGBoost 以提升树 XGBoost 为基础框架,以提升树为基本框架,保证了 SR 预测的鲁棒性。此外,为了应对 SR 预测任务中普遍存在的数据极度不平衡的挑战,在助推树中嵌入了成本感知损失函数--焦点损失,使 FLXGBoost 成为一种风险感知方式。此外,这种成本敏感型解决方案中还包含了一种由树衍生的可解释算法 SHAP,从而使 FLXGBoost 成为一种准确且可解释的风险感知模型。在银行 SR 金融风险预测数据集上的实验结果表明,FLXGBoost 能够显著降低风险银行的误分类率,从而减少因错误预测风险情况而造成的重大损失。此外,与基于不平衡机器学习的传统 SR 预测方法相比,FLXGBoost 的各种评价指标表明,它是一种具有竞争力的准确 SR 预测解决方案。此外,解释性分析进一步表明,从解释角度来看,FLXGBoost 是解决不平衡银行 SR 中偏差预测问题的一种有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data driven cost-sensitive boosted tree for interpretable banking systemic risk prediction
Systemic risk (SR) in the banking sector poses a significant threat to both the financial system and the real economy. Its inherent characteristics of nonlinearity, non-equilibrium, and interconnectedness make it challenging to analyze using conventional statistical methods. In this paper, a cost-sensitive gradient boosting tree algorithm, FLXGBoost, is proposed for predicting SR. FLXGBoost considers the boosted tree, XGBoost as the base framework, boosting trees as the fundamental framework, guaranteeing the robustness of SR prediction. Additionally, to tackle the challenge of extreme data imbalance prevalent in SR prediction tasks, a cost-aware loss function, focal loss, is embedded into the boosted tree to enable FLXGBoost a risk-aware fashion. Moreover, a tree-derived interpretable algorithm SHAP is incorporated into this cost-sensitive solution, making FLXGBoost an accurate and interpretable risk-aware model. Experimental results on a financial risk prediction dataset pertaining to banking SR evince the capacity of FLXGBoost to significantly reduce the misclassification rate of risk banks, thereby mitigating substantial losses attributed to erroneous predictions of risky scenarios. Moreover, compared with classical imbalanced machine learning-based SR prediction approaches, the diverse evaluation metrics of FLXGBoost show that it is a competitive solution for accurate SR prediction. Besides, the explanatory analysis further demonstrates that FLXGBoost is a promising solution to address the issue of biased predictions in imbalanced banking SR in the interpretation perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Chemical reaction and radiation analysis for the MHD Casson nanofluid fluid flow using artificial intelligence Impact of Lévy noise on spiral waves in a lattice of Chialvo neuron map Synchronization resilience of coupled fluctuating-damping oscillators in small-world weighted complex networks Transport of the moving obstacle driven by alignment active particles Interaction of mixed localized waves in optical media with higher-order dispersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1