用于高能量密度超级电容器的具有可控分层多孔纳米结构的二氧化锰装饰柔性碳纳米纤维

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-10 DOI:10.1016/j.surfin.2024.105248
Yongmei Luo , Junqi Li , Chaoyi Chen , Wei Liu , Xiang Yan
{"title":"用于高能量密度超级电容器的具有可控分层多孔纳米结构的二氧化锰装饰柔性碳纳米纤维","authors":"Yongmei Luo ,&nbsp;Junqi Li ,&nbsp;Chaoyi Chen ,&nbsp;Wei Liu ,&nbsp;Xiang Yan","doi":"10.1016/j.surfin.2024.105248","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing hierarchical porous structures and reducing material size enhance the electrochemical efficiency of porous carbon-based electrodes. In this study, ultrafine hierarchical porous carbon-based nanofibers were synthesized via electrospinning a blend of polyacrylonitrile, polymethyl methacrylate (PMMA), and zinc acetate dihydrate (ZAH), followed by pre-oxidation, carbonization, and acid washing. Adjusting the ZAH content allowed precise control of fiber diameters (300–600 nm) and promoted significant hierarchical porous structures, achieving an optimal mesopore to micropore ratio (1.65) and a high specific surface area (SSA) of 599 m²/g. MnO<sub>2</sub> nanosheets were in-situ modified on the carbon nanofibers, forming a hybrid electrode (MnO<sub>2</sub>@HPCNFs) with excellent flexibility, high SSA value, and rich pore structure. This electrode demonstrated a specific capacitance value equal to 1035 F/g at 0.5 A/g and maintained 80.7% capacitance at 10 A/g. The assembled asymmetric supercapacitor achieved an energy density of 54.81 Wh/kg. This study presents new possibilities for binder-free, self-supporting electrodes in electrochemical energy storage devices.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MnO2-decorated flexible carbon nanofibers with controllable hierarchical porous nanostructures for high energy density supercapacitors\",\"authors\":\"Yongmei Luo ,&nbsp;Junqi Li ,&nbsp;Chaoyi Chen ,&nbsp;Wei Liu ,&nbsp;Xiang Yan\",\"doi\":\"10.1016/j.surfin.2024.105248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructing hierarchical porous structures and reducing material size enhance the electrochemical efficiency of porous carbon-based electrodes. In this study, ultrafine hierarchical porous carbon-based nanofibers were synthesized via electrospinning a blend of polyacrylonitrile, polymethyl methacrylate (PMMA), and zinc acetate dihydrate (ZAH), followed by pre-oxidation, carbonization, and acid washing. Adjusting the ZAH content allowed precise control of fiber diameters (300–600 nm) and promoted significant hierarchical porous structures, achieving an optimal mesopore to micropore ratio (1.65) and a high specific surface area (SSA) of 599 m²/g. MnO<sub>2</sub> nanosheets were in-situ modified on the carbon nanofibers, forming a hybrid electrode (MnO<sub>2</sub>@HPCNFs) with excellent flexibility, high SSA value, and rich pore structure. This electrode demonstrated a specific capacitance value equal to 1035 F/g at 0.5 A/g and maintained 80.7% capacitance at 10 A/g. The assembled asymmetric supercapacitor achieved an energy density of 54.81 Wh/kg. This study presents new possibilities for binder-free, self-supporting electrodes in electrochemical energy storage devices.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024014044\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024014044","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

构建分层多孔结构和减小材料尺寸可提高多孔碳基电极的电化学效率。本研究通过电纺丝聚丙烯腈、聚甲基丙烯酸甲酯(PMMA)和二水醋酸锌(ZAH)的混合物,然后进行预氧化、碳化和酸洗,合成了超细分层多孔碳基纳米纤维。调整 ZAH 含量可精确控制纤维直径(300-600 nm),促进形成显著的分层多孔结构,实现最佳中孔与微孔比(1.65)和 599 m²/g 的高比表面积(SSA)。MnO2 纳米片被原位修饰在碳纳米纤维上,形成了一种具有优异柔韧性、高 SSA 值和丰富孔隙结构的混合电极(MnO2@HPCNFs)。该电极在 0.5 A/g 时的比电容值等于 1035 F/g,在 10 A/g 时的比电容值保持在 80.7%。组装后的不对称超级电容器的能量密度达到 54.81 Wh/kg。这项研究为电化学储能装置中的无粘结剂自支撑电极提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MnO2-decorated flexible carbon nanofibers with controllable hierarchical porous nanostructures for high energy density supercapacitors
Constructing hierarchical porous structures and reducing material size enhance the electrochemical efficiency of porous carbon-based electrodes. In this study, ultrafine hierarchical porous carbon-based nanofibers were synthesized via electrospinning a blend of polyacrylonitrile, polymethyl methacrylate (PMMA), and zinc acetate dihydrate (ZAH), followed by pre-oxidation, carbonization, and acid washing. Adjusting the ZAH content allowed precise control of fiber diameters (300–600 nm) and promoted significant hierarchical porous structures, achieving an optimal mesopore to micropore ratio (1.65) and a high specific surface area (SSA) of 599 m²/g. MnO2 nanosheets were in-situ modified on the carbon nanofibers, forming a hybrid electrode (MnO2@HPCNFs) with excellent flexibility, high SSA value, and rich pore structure. This electrode demonstrated a specific capacitance value equal to 1035 F/g at 0.5 A/g and maintained 80.7% capacitance at 10 A/g. The assembled asymmetric supercapacitor achieved an energy density of 54.81 Wh/kg. This study presents new possibilities for binder-free, self-supporting electrodes in electrochemical energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1