等离子体辅助单步合成碳涂层 SrFe2O4 电极,用于增强超级电容器和氧进化反应

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-24 DOI:10.1016/j.surfin.2024.105339
Kumaresan Lakshmanan , Amarnath Pasupathi , Bharani Narayanan , Yugeswaran Subramaniam , Shanmugavelayutham Gurusamy
{"title":"等离子体辅助单步合成碳涂层 SrFe2O4 电极,用于增强超级电容器和氧进化反应","authors":"Kumaresan Lakshmanan ,&nbsp;Amarnath Pasupathi ,&nbsp;Bharani Narayanan ,&nbsp;Yugeswaran Subramaniam ,&nbsp;Shanmugavelayutham Gurusamy","doi":"10.1016/j.surfin.2024.105339","DOIUrl":null,"url":null,"abstract":"<div><div>Developing highly efficient, conductive, and porous electrode materials for superior electrochemical bifunctional applications presents a formidable challenge, particularly when considering impurity-free large-scale production. This investigation focuses on synthesizing a composite material of highly conductive amorphous carbon-coated SrFe<sub>2</sub>O<sub>4</sub> nanoparticles to enhance supercapacitor and oxygen evolution performance. The C@SrFe<sub>2</sub>O<sub>4</sub> nanoparticles were synthesized through a thermal plasma process utilizing argon, methane, and carbon dioxide gas environments. The prepared samples' phase, crystal structure, morphology, elemental composition, and chemical state analysis were thoroughly examined. The electrochemical performance of the prepared samples, including Fe<sub>3</sub>O<sub>4</sub>, SrO, and C@SrFe<sub>2</sub>O<sub>4</sub> electrodes, was evaluated for their suitability in electrochemical capacitor applications. Remarkably, C@SrFe<sub>2</sub>O<sub>4</sub> nanoparticles exhibited notable electrochemical pseudocapacitive behavior, demonstrating a significantly higher specific capacitance of 588.7 F/g at a current density of 1 A/g. Moreover, at a current density of 10 A/g, the C@SrFe<sub>2</sub>O<sub>4</sub> electrode exhibited outstanding cycling stability, maintaining 91 % of its initial capacitance over 5000 charge-discharge cycles. Furthermore, it showcased exceptional and uniform electrocatalytic activity for the OER, requiring only 186 mV in overpotentials to achieve a current density of 10 mA/ cm<sup>2</sup>. These findings underscore the potential of mesoporous C@SrFe<sub>2</sub>O<sub>4</sub> nanoparticles as promising materials for supercapacitors and OER applications.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma assisted single-step synthesis of carbon-coated SrFe2O4 electrodes for enhancing supercapacitor and oxygen evolution reaction\",\"authors\":\"Kumaresan Lakshmanan ,&nbsp;Amarnath Pasupathi ,&nbsp;Bharani Narayanan ,&nbsp;Yugeswaran Subramaniam ,&nbsp;Shanmugavelayutham Gurusamy\",\"doi\":\"10.1016/j.surfin.2024.105339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing highly efficient, conductive, and porous electrode materials for superior electrochemical bifunctional applications presents a formidable challenge, particularly when considering impurity-free large-scale production. This investigation focuses on synthesizing a composite material of highly conductive amorphous carbon-coated SrFe<sub>2</sub>O<sub>4</sub> nanoparticles to enhance supercapacitor and oxygen evolution performance. The C@SrFe<sub>2</sub>O<sub>4</sub> nanoparticles were synthesized through a thermal plasma process utilizing argon, methane, and carbon dioxide gas environments. The prepared samples' phase, crystal structure, morphology, elemental composition, and chemical state analysis were thoroughly examined. The electrochemical performance of the prepared samples, including Fe<sub>3</sub>O<sub>4</sub>, SrO, and C@SrFe<sub>2</sub>O<sub>4</sub> electrodes, was evaluated for their suitability in electrochemical capacitor applications. Remarkably, C@SrFe<sub>2</sub>O<sub>4</sub> nanoparticles exhibited notable electrochemical pseudocapacitive behavior, demonstrating a significantly higher specific capacitance of 588.7 F/g at a current density of 1 A/g. Moreover, at a current density of 10 A/g, the C@SrFe<sub>2</sub>O<sub>4</sub> electrode exhibited outstanding cycling stability, maintaining 91 % of its initial capacitance over 5000 charge-discharge cycles. Furthermore, it showcased exceptional and uniform electrocatalytic activity for the OER, requiring only 186 mV in overpotentials to achieve a current density of 10 mA/ cm<sup>2</sup>. These findings underscore the potential of mesoporous C@SrFe<sub>2</sub>O<sub>4</sub> nanoparticles as promising materials for supercapacitors and OER applications.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024014950\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024014950","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为卓越的电化学双功能应用开发高效、导电和多孔电极材料是一项艰巨的挑战,尤其是在考虑无杂质大规模生产的情况下。本研究的重点是合成一种高导电性无定形碳包覆 SrFe2O4 纳米粒子的复合材料,以提高超级电容器和氧气进化的性能。C@SrFe2O4 纳米粒子是利用氩气、甲烷和二氧化碳气体环境,通过热等离子体工艺合成的。对所制备样品的相貌、晶体结构、形态、元素组成和化学态分析进行了深入研究。对所制备样品(包括 Fe3O4、SrO 和 C@SrFe2O4 电极)的电化学性能进行了评估,以确定其在电化学电容器应用中的适用性。值得注意的是,C@SrFe2O4 纳米粒子表现出显著的电化学伪电容行为,在电流密度为 1 A/g 时,比电容高达 588.7 F/g。此外,在 10 A/g 的电流密度下,C@SrFe2O4 电极表现出卓越的循环稳定性,在 5000 次充放电循环中保持了 91% 的初始电容。此外,它还显示出卓越而均匀的 OER 电催化活性,只需要 186 mV 的过电位就能达到 10 mA/ cm2 的电流密度。这些发现强调了介孔 C@SrFe2O4 纳米粒子作为超级电容器和 OER 应用材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasma assisted single-step synthesis of carbon-coated SrFe2O4 electrodes for enhancing supercapacitor and oxygen evolution reaction
Developing highly efficient, conductive, and porous electrode materials for superior electrochemical bifunctional applications presents a formidable challenge, particularly when considering impurity-free large-scale production. This investigation focuses on synthesizing a composite material of highly conductive amorphous carbon-coated SrFe2O4 nanoparticles to enhance supercapacitor and oxygen evolution performance. The C@SrFe2O4 nanoparticles were synthesized through a thermal plasma process utilizing argon, methane, and carbon dioxide gas environments. The prepared samples' phase, crystal structure, morphology, elemental composition, and chemical state analysis were thoroughly examined. The electrochemical performance of the prepared samples, including Fe3O4, SrO, and C@SrFe2O4 electrodes, was evaluated for their suitability in electrochemical capacitor applications. Remarkably, C@SrFe2O4 nanoparticles exhibited notable electrochemical pseudocapacitive behavior, demonstrating a significantly higher specific capacitance of 588.7 F/g at a current density of 1 A/g. Moreover, at a current density of 10 A/g, the C@SrFe2O4 electrode exhibited outstanding cycling stability, maintaining 91 % of its initial capacitance over 5000 charge-discharge cycles. Furthermore, it showcased exceptional and uniform electrocatalytic activity for the OER, requiring only 186 mV in overpotentials to achieve a current density of 10 mA/ cm2. These findings underscore the potential of mesoporous C@SrFe2O4 nanoparticles as promising materials for supercapacitors and OER applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1