{"title":"利用时空聚类和支持向量机模型的大坝变形监测数据缺失数据处理方法","authors":"Yan-tao Zhu , Chong-shi Gu , Mihai A. Diaconeasa","doi":"10.1016/j.wse.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam. However, the deformation monitoring data are often incomplete due to environmental changes, monitoring instrument faults, and human operational errors, thereby often hindering the accurate assessment of actual deformation patterns. This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data. It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring. The proposed method was validated in a concrete dam project, with the model error maintaining within 5%, demonstrating its effectiveness in processing missing deformation data. This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 4","pages":"Pages 417-424"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model\",\"authors\":\"Yan-tao Zhu , Chong-shi Gu , Mihai A. Diaconeasa\",\"doi\":\"10.1016/j.wse.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam. However, the deformation monitoring data are often incomplete due to environmental changes, monitoring instrument faults, and human operational errors, thereby often hindering the accurate assessment of actual deformation patterns. This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data. It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring. The proposed method was validated in a concrete dam project, with the model error maintaining within 5%, demonstrating its effectiveness in processing missing deformation data. This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.</div></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"17 4\",\"pages\":\"Pages 417-424\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237024000760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model
Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam. However, the deformation monitoring data are often incomplete due to environmental changes, monitoring instrument faults, and human operational errors, thereby often hindering the accurate assessment of actual deformation patterns. This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data. It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring. The proposed method was validated in a concrete dam project, with the model error maintaining within 5%, demonstrating its effectiveness in processing missing deformation data. This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.