通过有效共轭长度定制隧道效应促进的界面电荷捕获

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-29 DOI:10.1002/adfm.202415415
Suhendro Purbo Prakoso, Hsun-Xien Peng, Mei-Nung Chen, Qi-An Hong, Rosari Saleh, Yu-Cheng Chiu
{"title":"通过有效共轭长度定制隧道效应促进的界面电荷捕获","authors":"Suhendro Purbo Prakoso, Hsun-Xien Peng, Mei-Nung Chen, Qi-An Hong, Rosari Saleh, Yu-Cheng Chiu","doi":"10.1002/adfm.202415415","DOIUrl":null,"url":null,"abstract":"Highly efficient charge injection and charge trapping stability of the tunneling layer are of desirable and practical importance to transistor memory applications. However, both of which can be contradictory to the nature properties of its material. It is herein demonstrated that lowering the energy mismatch of the tunneling layer by employing a longer conjugation length of the polymer can improve the charge injection efficiency, albeit the trapped charges will be easily diminished and finally losing its memory characteristics, and vice versa. To further elaborate and verify this concept, both materials are blended with distinct nature of properties as the tunneling layer in pentacene-based transistor devices. As the results, the device using 300 nm SiO<sub>2</sub> with optimum blending ratio displays a broad memory window of ≈77.6 V which is superior to the non-blended tunneling layer carrying appropriate energy levels and band gap energy, not to mention, revealing fast operation time (≈1 s), low driving voltage (≈20 V), long retention (&gt;10<sup>4</sup> s), and high switching stability over 50 cycles with on–off ratio of &gt;10<sup>4</sup>. Most importantly, this finding shed insight into the design of tunneling materials for advancing organic transistor memory technologies based on tunneling-effect-boosted interfacial charge trapping.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring the Tunneling-Effect-Boosted Interfacial Charge Trapping via Effective Conjugation Length\",\"authors\":\"Suhendro Purbo Prakoso, Hsun-Xien Peng, Mei-Nung Chen, Qi-An Hong, Rosari Saleh, Yu-Cheng Chiu\",\"doi\":\"10.1002/adfm.202415415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly efficient charge injection and charge trapping stability of the tunneling layer are of desirable and practical importance to transistor memory applications. However, both of which can be contradictory to the nature properties of its material. It is herein demonstrated that lowering the energy mismatch of the tunneling layer by employing a longer conjugation length of the polymer can improve the charge injection efficiency, albeit the trapped charges will be easily diminished and finally losing its memory characteristics, and vice versa. To further elaborate and verify this concept, both materials are blended with distinct nature of properties as the tunneling layer in pentacene-based transistor devices. As the results, the device using 300 nm SiO<sub>2</sub> with optimum blending ratio displays a broad memory window of ≈77.6 V which is superior to the non-blended tunneling layer carrying appropriate energy levels and band gap energy, not to mention, revealing fast operation time (≈1 s), low driving voltage (≈20 V), long retention (&gt;10<sup>4</sup> s), and high switching stability over 50 cycles with on–off ratio of &gt;10<sup>4</sup>. Most importantly, this finding shed insight into the design of tunneling materials for advancing organic transistor memory technologies based on tunneling-effect-boosted interfacial charge trapping.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202415415\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415415","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

隧道层的高效电荷注入和电荷捕获稳定性对晶体管存储器的应用具有重要的现实意义。然而,这两者都可能与其材料的性质属性相矛盾。本文证明,通过采用较长共轭长度的聚合物来降低隧道层的能量失配,可以提高电荷注入效率,但捕获的电荷会很容易减少,最终失去记忆特性,反之亦然。为了进一步阐述和验证这一概念,我们在基于五苯的晶体管器件中混合了两种性质不同的材料作为隧道层。结果表明,使用 300 nm SiO2 且具有最佳混合比的器件显示出≈77.6 V 的宽记忆窗口,优于不混合隧道层的器件,后者具有适当的能级和带隙能,而且还显示出快速操作时间(≈1 s)、低驱动电压(≈20 V)、长保持时间(>104 s)和 50 个周期以上的高开关稳定性(开关比为>104)。最重要的是,这一发现为基于隧道效应增强的界面电荷捕获的有机晶体管存储器技术设计隧道材料提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring the Tunneling-Effect-Boosted Interfacial Charge Trapping via Effective Conjugation Length
Highly efficient charge injection and charge trapping stability of the tunneling layer are of desirable and practical importance to transistor memory applications. However, both of which can be contradictory to the nature properties of its material. It is herein demonstrated that lowering the energy mismatch of the tunneling layer by employing a longer conjugation length of the polymer can improve the charge injection efficiency, albeit the trapped charges will be easily diminished and finally losing its memory characteristics, and vice versa. To further elaborate and verify this concept, both materials are blended with distinct nature of properties as the tunneling layer in pentacene-based transistor devices. As the results, the device using 300 nm SiO2 with optimum blending ratio displays a broad memory window of ≈77.6 V which is superior to the non-blended tunneling layer carrying appropriate energy levels and band gap energy, not to mention, revealing fast operation time (≈1 s), low driving voltage (≈20 V), long retention (>104 s), and high switching stability over 50 cycles with on–off ratio of >104. Most importantly, this finding shed insight into the design of tunneling materials for advancing organic transistor memory technologies based on tunneling-effect-boosted interfacial charge trapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
High Antimicrobial Electrotherapy and Wound Monitoring Hydrogel with Bimetal Phenolic Networks for Smart Healthcare Localized Flexoelectric Effect Around Ba(CuNb) Nano-Clusters in Epitaxial BiFeO3 Films for Enhancement of Electric and Multiferroic Properties Stochastic Nanoroughness Inhibits and Reverses Glial Scarring In Vitro and In Vivo via a Mechanobiology Paradigm Involving Piezo-1 Pressure-Induced Capacity Recovery and Performance Enhancements in LTO/NMC-LCO Batteries Quantitative Design of Cathode Materials for Ion Battery from a Reductionist Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1