{"title":"利用保利噪声解码面码的难度结果","authors":"Alex Fischer, Akimasa Miyake","doi":"10.22331/q-2024-10-28-1511","DOIUrl":null,"url":null,"abstract":"Real quantum computers will be subject to complicated, qubit-dependent noise, instead of simple noise such as depolarizing noise with the same strength for all qubits. We can do quantum error correction more effectively if our decoding algorithms take into account this prior information about the specific noise present. This motivates us to consider the complexity of surface code decoding where the input to the decoding problem is not only the syndrome-measurement results, but also a noise model in the form of probabilities of single-qubit Pauli errors for every qubit.<br/>\n<br/> In this setting, we show that quantum maximum likelihood decoding (QMLD) and degenerate quantum maximum likelihood decoding (DQMLD) for the surface code are NP-hard and #P-hard, respectively. We reduce directly from SAT for QMLD, and from #SAT for DQMLD, by showing how to transform a boolean formula into a qubit-dependent Pauli noise model and set of syndromes that encode the satisfiability properties of the formula. We also give hardness of approximation results for QMLD and DQMLD. These are worst-case hardness results that do not contradict the empirical fact that many efficient surface code decoders are correct in the average case (i.e., for most sets of syndromes and for most reasonable noise models). These hardness results are nicely analogous with the known hardness results for QMLD and DQMLD for arbitrary stabilizer codes with independent $X$ and $Z$ noise.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardness results for decoding the surface code with Pauli noise\",\"authors\":\"Alex Fischer, Akimasa Miyake\",\"doi\":\"10.22331/q-2024-10-28-1511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real quantum computers will be subject to complicated, qubit-dependent noise, instead of simple noise such as depolarizing noise with the same strength for all qubits. We can do quantum error correction more effectively if our decoding algorithms take into account this prior information about the specific noise present. This motivates us to consider the complexity of surface code decoding where the input to the decoding problem is not only the syndrome-measurement results, but also a noise model in the form of probabilities of single-qubit Pauli errors for every qubit.<br/>\\n<br/> In this setting, we show that quantum maximum likelihood decoding (QMLD) and degenerate quantum maximum likelihood decoding (DQMLD) for the surface code are NP-hard and #P-hard, respectively. We reduce directly from SAT for QMLD, and from #SAT for DQMLD, by showing how to transform a boolean formula into a qubit-dependent Pauli noise model and set of syndromes that encode the satisfiability properties of the formula. We also give hardness of approximation results for QMLD and DQMLD. These are worst-case hardness results that do not contradict the empirical fact that many efficient surface code decoders are correct in the average case (i.e., for most sets of syndromes and for most reasonable noise models). These hardness results are nicely analogous with the known hardness results for QMLD and DQMLD for arbitrary stabilizer codes with independent $X$ and $Z$ noise.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-10-28-1511\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-28-1511","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Hardness results for decoding the surface code with Pauli noise
Real quantum computers will be subject to complicated, qubit-dependent noise, instead of simple noise such as depolarizing noise with the same strength for all qubits. We can do quantum error correction more effectively if our decoding algorithms take into account this prior information about the specific noise present. This motivates us to consider the complexity of surface code decoding where the input to the decoding problem is not only the syndrome-measurement results, but also a noise model in the form of probabilities of single-qubit Pauli errors for every qubit.
In this setting, we show that quantum maximum likelihood decoding (QMLD) and degenerate quantum maximum likelihood decoding (DQMLD) for the surface code are NP-hard and #P-hard, respectively. We reduce directly from SAT for QMLD, and from #SAT for DQMLD, by showing how to transform a boolean formula into a qubit-dependent Pauli noise model and set of syndromes that encode the satisfiability properties of the formula. We also give hardness of approximation results for QMLD and DQMLD. These are worst-case hardness results that do not contradict the empirical fact that many efficient surface code decoders are correct in the average case (i.e., for most sets of syndromes and for most reasonable noise models). These hardness results are nicely analogous with the known hardness results for QMLD and DQMLD for arbitrary stabilizer codes with independent $X$ and $Z$ noise.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.