{"title":"通过鲁棒局部脉冲序列实现自旋系统中的通用量子处理器","authors":"Matteo Votto, Johannes Zeiher, Benoît Vermersch","doi":"10.22331/q-2024-10-29-1513","DOIUrl":null,"url":null,"abstract":"We propose a protocol to realize quantum simulation and computation in spin systems with long-range interactions. Our approach relies on the local addressing of single spins with external fields parametrized by Walsh functions. This enables a mapping from a class of target Hamiltonians, defined by the graph structure of their interactions, to pulse sequences. We then obtain a recipe to implement arbitrary two-body Hamiltonians and universal quantum circuits. Performance guarantees are provided in terms of bounds on Trotter errors and total number of pulses. Additionally, Walsh pulse sequences are shown to be robust against various types of pulse errors, in contrast to previous hybrid digital-analog schemes of quantum computation. We demonstrate and numerically benchmark our protocol with examples from the dynamics of spin models, quantum error correction and quantum optimization algorithms.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"100 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal quantum processors in spin systems via robust local pulse sequences\",\"authors\":\"Matteo Votto, Johannes Zeiher, Benoît Vermersch\",\"doi\":\"10.22331/q-2024-10-29-1513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a protocol to realize quantum simulation and computation in spin systems with long-range interactions. Our approach relies on the local addressing of single spins with external fields parametrized by Walsh functions. This enables a mapping from a class of target Hamiltonians, defined by the graph structure of their interactions, to pulse sequences. We then obtain a recipe to implement arbitrary two-body Hamiltonians and universal quantum circuits. Performance guarantees are provided in terms of bounds on Trotter errors and total number of pulses. Additionally, Walsh pulse sequences are shown to be robust against various types of pulse errors, in contrast to previous hybrid digital-analog schemes of quantum computation. We demonstrate and numerically benchmark our protocol with examples from the dynamics of spin models, quantum error correction and quantum optimization algorithms.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-10-29-1513\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-29-1513","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Universal quantum processors in spin systems via robust local pulse sequences
We propose a protocol to realize quantum simulation and computation in spin systems with long-range interactions. Our approach relies on the local addressing of single spins with external fields parametrized by Walsh functions. This enables a mapping from a class of target Hamiltonians, defined by the graph structure of their interactions, to pulse sequences. We then obtain a recipe to implement arbitrary two-body Hamiltonians and universal quantum circuits. Performance guarantees are provided in terms of bounds on Trotter errors and total number of pulses. Additionally, Walsh pulse sequences are shown to be robust against various types of pulse errors, in contrast to previous hybrid digital-analog schemes of quantum computation. We demonstrate and numerically benchmark our protocol with examples from the dynamics of spin models, quantum error correction and quantum optimization algorithms.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.