{"title":"用于高κ介电集成的超扁平六方氮化硼","authors":"Hayoung Ko, Seungjin Lee, Ki Kang Kim","doi":"10.1038/s41563-024-02013-9","DOIUrl":null,"url":null,"abstract":"An ultraflat, single-crystal hexagonal boron nitride film enables the production of wafer-scale, ultrathin high-κ dielectrics for two-dimensional electronics, meeting the 2025 targets set by the International Roadmap for Devices and Systems.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1461-1462"},"PeriodicalIF":37.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraflat hexagonal boron nitride for high-κ dielectric integration\",\"authors\":\"Hayoung Ko, Seungjin Lee, Ki Kang Kim\",\"doi\":\"10.1038/s41563-024-02013-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultraflat, single-crystal hexagonal boron nitride film enables the production of wafer-scale, ultrathin high-κ dielectrics for two-dimensional electronics, meeting the 2025 targets set by the International Roadmap for Devices and Systems.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 11\",\"pages\":\"1461-1462\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-02013-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-02013-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultraflat hexagonal boron nitride for high-κ dielectric integration
An ultraflat, single-crystal hexagonal boron nitride film enables the production of wafer-scale, ultrathin high-κ dielectrics for two-dimensional electronics, meeting the 2025 targets set by the International Roadmap for Devices and Systems.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.