在 1.3 V cm-1 直流电场中生长的本征无序蛋白 (IDP) AtPP16-1 衍射晶体

IF 1.7 4区 材料科学 Q3 CRYSTALLOGRAPHY Journal of Crystal Growth Pub Date : 2024-10-24 DOI:10.1016/j.jcrysgro.2024.127959
Noorul Huda, Halavath Ramesh, Abani K. Bhuyan
{"title":"在 1.3 V cm-1 直流电场中生长的本征无序蛋白 (IDP) AtPP16-1 衍射晶体","authors":"Noorul Huda,&nbsp;Halavath Ramesh,&nbsp;Abani K. Bhuyan","doi":"10.1016/j.jcrysgro.2024.127959","DOIUrl":null,"url":null,"abstract":"<div><div>DC electric field as weak as ∼1.3 V cm<sup>−1</sup> induces crystal nucleation in very dilute protein solutions lacking precipitant. The basis of such growth is the microscopic model of interaction of protein dipoles with the Stark field, leading to glass-like amorphous aggregation and reconfiguration of the aggregates for crystal nucleation. This modest approach is very different from an earlier and rather ‘aggressive’ one in which electric field of ∼1 kV or orders of magnitude in excess is used to influence charge migration in a highly concentrated protein solution having precipitant confined to the crystallization drop. As an application of the precipitant-lacking ultralow protein method, the present work seeks the assistance of internally supplied 1.3 V cm<sup>−1</sup> DC field to crystallize an intrinsically disordered protein (IDP) called <em>At</em>PP16-1 in a 0.017 mg mL<sup>−1</sup> solution. Crystallization is allowed in cuvette cells of spectrometers with online electric field, enabling measurement of real time changes in spectral features. The average crystal size increases with the time of passage of the electric field, from ∼0.042 at 10 min to 0.165 µm at the end of 300 min. The cubic crystals diffract electron and X-ray. Electron diffraction spot indexing yields lattice spacing <em>d<sub>hkl</sub></em> ∼ 2.85 Å, consistent with 2.88 Å found from powder X-ray diffraction analysis. This level of lattice spacing will correspond to moderately resolved crystal structure of the IDP.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"649 ","pages":"Article 127959"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffracting crystals of an intrinsically disordered protein (IDP) AtPP16-1 grown in 1.3 V cm−1 DC field\",\"authors\":\"Noorul Huda,&nbsp;Halavath Ramesh,&nbsp;Abani K. Bhuyan\",\"doi\":\"10.1016/j.jcrysgro.2024.127959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>DC electric field as weak as ∼1.3 V cm<sup>−1</sup> induces crystal nucleation in very dilute protein solutions lacking precipitant. The basis of such growth is the microscopic model of interaction of protein dipoles with the Stark field, leading to glass-like amorphous aggregation and reconfiguration of the aggregates for crystal nucleation. This modest approach is very different from an earlier and rather ‘aggressive’ one in which electric field of ∼1 kV or orders of magnitude in excess is used to influence charge migration in a highly concentrated protein solution having precipitant confined to the crystallization drop. As an application of the precipitant-lacking ultralow protein method, the present work seeks the assistance of internally supplied 1.3 V cm<sup>−1</sup> DC field to crystallize an intrinsically disordered protein (IDP) called <em>At</em>PP16-1 in a 0.017 mg mL<sup>−1</sup> solution. Crystallization is allowed in cuvette cells of spectrometers with online electric field, enabling measurement of real time changes in spectral features. The average crystal size increases with the time of passage of the electric field, from ∼0.042 at 10 min to 0.165 µm at the end of 300 min. The cubic crystals diffract electron and X-ray. Electron diffraction spot indexing yields lattice spacing <em>d<sub>hkl</sub></em> ∼ 2.85 Å, consistent with 2.88 Å found from powder X-ray diffraction analysis. This level of lattice spacing will correspond to moderately resolved crystal structure of the IDP.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"649 \",\"pages\":\"Article 127959\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002202482400397X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002202482400397X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

在缺乏沉淀剂的极稀薄蛋白质溶液中,弱至 1.3 V cm-1 的直流电场可诱导晶体成核。这种生长的基础是蛋白质偶极子与斯塔克电场相互作用的微观模型,它导致玻璃状无定形聚集,并重新配置聚集体以形成晶体核。这种适度的方法与早期相当 "激进 "的方法截然不同,早期的方法是在高浓度蛋白质溶液中使用 1 kV 或更高数量级的电场来影响电荷迁移,而沉淀剂则被限制在结晶滴中。作为缺乏沉淀剂的超低蛋白质方法的一种应用,本研究工作寻求内部提供的 1.3 V cm-1 直流电场的帮助,以结晶 0.017 mg mL-1 溶液中名为 AtPP16-1 的本征无序蛋白 (IDP)。结晶可在具有在线电场的光谱仪的比色池中进行,从而能够测量光谱特征的实时变化。晶体的平均尺寸随电场通过时间的增加而增大,从 10 分钟时的 0.042 微米增至 300 分钟结束时的 0.165 微米。立方晶体可衍射电子和 X 射线。电子衍射光斑索引得出的晶格间距 dhkl ∼ 2.85 Å,与粉末 X 射线衍射分析得出的 2.88 Å 一致。这种晶格间距相当于 IDP 的中等分辨率晶体结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffracting crystals of an intrinsically disordered protein (IDP) AtPP16-1 grown in 1.3 V cm−1 DC field
DC electric field as weak as ∼1.3 V cm−1 induces crystal nucleation in very dilute protein solutions lacking precipitant. The basis of such growth is the microscopic model of interaction of protein dipoles with the Stark field, leading to glass-like amorphous aggregation and reconfiguration of the aggregates for crystal nucleation. This modest approach is very different from an earlier and rather ‘aggressive’ one in which electric field of ∼1 kV or orders of magnitude in excess is used to influence charge migration in a highly concentrated protein solution having precipitant confined to the crystallization drop. As an application of the precipitant-lacking ultralow protein method, the present work seeks the assistance of internally supplied 1.3 V cm−1 DC field to crystallize an intrinsically disordered protein (IDP) called AtPP16-1 in a 0.017 mg mL−1 solution. Crystallization is allowed in cuvette cells of spectrometers with online electric field, enabling measurement of real time changes in spectral features. The average crystal size increases with the time of passage of the electric field, from ∼0.042 at 10 min to 0.165 µm at the end of 300 min. The cubic crystals diffract electron and X-ray. Electron diffraction spot indexing yields lattice spacing dhkl ∼ 2.85 Å, consistent with 2.88 Å found from powder X-ray diffraction analysis. This level of lattice spacing will correspond to moderately resolved crystal structure of the IDP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
期刊最新文献
Role of synthesis temperature in the formation of ZnO nanoparticles via the Sol-Gel process Editorial Board Thermal atomic layer deposition of Ga2O3 films using trimethylgallium and H2O Doping behavior and occurrence state of Na impurity in α-calcium sulfate hemihydrate prepared in Na2SO4 solution Quantum chemical study of trimethylindium and trimethylgallium gas-phase reaction pathways in InGaN MOCVD growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1