通过动力学蒙特卡罗模拟探索开环偏聚聚合过程

IF 5.5 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Advances Pub Date : 2024-10-09 DOI:10.1016/j.ceja.2024.100654
Ákos Szabó, Béla Iván, Ervin Kovács
{"title":"通过动力学蒙特卡罗模拟探索开环偏聚聚合过程","authors":"Ákos Szabó,&nbsp;Béla Iván,&nbsp;Ervin Kovács","doi":"10.1016/j.ceja.2024.100654","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the kinetics of polymerization reactions is a powerful tool to obtain information for the engineering design of such processes. It provides insights into how the relative rates of elementary reactions which influence both the kinetics of the reactions and thus characteristics of the products as well, particularly when the reaction parameters of these reactions are unknown. Among polymerization processes, ring-opening metathesis polymerization (ROMP) has gained broad academic and industrial interest, due to its mild conditions to obtain a wide range of polymer products. In this study, kinetic Monte Carlo simulation was applied to reveal the effect of the elementary reactions of ROMP on the kinetics and product distribution. Both the propagation and the cross-metathesis reactions were considered, with the latter leading to the formation of various types of macrospecies whose population levels were also monitored. Relevant tendencies were observed regarding how the variations in the reaction parameters of the elementary reactions of this polymerization process, such as reaction probabilities, monomer addition method, catalyst-to-monomer ratio, and reaction time, affect the kinetics of the polymerization process and the product distributions. These variations also influence the key macromolecular parameters of the resulting polymeric materials, including chain length distribution (CLD), population levels, and polymer functionalities. The results of this study indicate that this simulation technique is a valuable tool for mapping the tailoring possibilities of modifying the reaction parameters of ROMP to achieve desired properties. These properties include number average molecular weight, polydispersity, chain end functionality, and macrocycle-free products.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the ring-opening metathesis polymerization process by kinetic Monte Carlo simulation\",\"authors\":\"Ákos Szabó,&nbsp;Béla Iván,&nbsp;Ervin Kovács\",\"doi\":\"10.1016/j.ceja.2024.100654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Investigating the kinetics of polymerization reactions is a powerful tool to obtain information for the engineering design of such processes. It provides insights into how the relative rates of elementary reactions which influence both the kinetics of the reactions and thus characteristics of the products as well, particularly when the reaction parameters of these reactions are unknown. Among polymerization processes, ring-opening metathesis polymerization (ROMP) has gained broad academic and industrial interest, due to its mild conditions to obtain a wide range of polymer products. In this study, kinetic Monte Carlo simulation was applied to reveal the effect of the elementary reactions of ROMP on the kinetics and product distribution. Both the propagation and the cross-metathesis reactions were considered, with the latter leading to the formation of various types of macrospecies whose population levels were also monitored. Relevant tendencies were observed regarding how the variations in the reaction parameters of the elementary reactions of this polymerization process, such as reaction probabilities, monomer addition method, catalyst-to-monomer ratio, and reaction time, affect the kinetics of the polymerization process and the product distributions. These variations also influence the key macromolecular parameters of the resulting polymeric materials, including chain length distribution (CLD), population levels, and polymer functionalities. The results of this study indicate that this simulation technique is a valuable tool for mapping the tailoring possibilities of modifying the reaction parameters of ROMP to achieve desired properties. These properties include number average molecular weight, polydispersity, chain end functionality, and macrocycle-free products.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821124000711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究聚合反应的动力学是获取此类工艺工程设计信息的有力工具。它让我们深入了解基本反应的相对速率如何影响反应的动力学,从而影响产物的特性,尤其是在这些反应的反应参数未知的情况下。在聚合过程中,开环偏聚(ROMP)因其温和的条件可获得多种聚合物产品而受到学术界和工业界的广泛关注。本研究采用蒙特卡洛动力学模拟揭示了 ROMP 基本反应对动力学和产物分布的影响。传播反应和交叉甲基化反应都被考虑在内,后者导致形成各种类型的大分子,其数量水平也受到监测。在该聚合过程的基本反应的反应参数变化(如反应概率、单体添加方法、催化剂与单体的比例和反应时间)如何影响聚合过程的动力学和产物分布方面,观察到了相关的趋势。这些变化也会影响所生成聚合物材料的关键大分子参数,包括链长分布 (CLD)、种群水平和聚合物官能度。研究结果表明,这种模拟技术是一种宝贵的工具,可用于绘制修改 ROMP 反应参数的定制可能性图,以获得所需的特性。这些特性包括平均分子量、多分散性、链端官能度和无大环产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the ring-opening metathesis polymerization process by kinetic Monte Carlo simulation
Investigating the kinetics of polymerization reactions is a powerful tool to obtain information for the engineering design of such processes. It provides insights into how the relative rates of elementary reactions which influence both the kinetics of the reactions and thus characteristics of the products as well, particularly when the reaction parameters of these reactions are unknown. Among polymerization processes, ring-opening metathesis polymerization (ROMP) has gained broad academic and industrial interest, due to its mild conditions to obtain a wide range of polymer products. In this study, kinetic Monte Carlo simulation was applied to reveal the effect of the elementary reactions of ROMP on the kinetics and product distribution. Both the propagation and the cross-metathesis reactions were considered, with the latter leading to the formation of various types of macrospecies whose population levels were also monitored. Relevant tendencies were observed regarding how the variations in the reaction parameters of the elementary reactions of this polymerization process, such as reaction probabilities, monomer addition method, catalyst-to-monomer ratio, and reaction time, affect the kinetics of the polymerization process and the product distributions. These variations also influence the key macromolecular parameters of the resulting polymeric materials, including chain length distribution (CLD), population levels, and polymer functionalities. The results of this study indicate that this simulation technique is a valuable tool for mapping the tailoring possibilities of modifying the reaction parameters of ROMP to achieve desired properties. These properties include number average molecular weight, polydispersity, chain end functionality, and macrocycle-free products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
期刊最新文献
Enhanced cycling stability of silicon electrode for lithium-ion batteries by dual hydrogen bonding mediated by carboxylated carbon nanotube Microwave-assisted acid and alkali pretreatment of Napier grass for enhanced biohydrogen production and integrated biorefinery potential Innovative solar-assisted direct contact membrane distillation system: Dynamic modeling and performance analysis Enhancement of H2-water mass transfer using methyl-modified hollow mesoporous silica nanoparticles for efficient microbial CO2 reduction Enhancing photovoltaic cell design with multilayer sequential neural networks: A study on neodymium-doped ZnO nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1