地震下斜交地裂缝盾构隧道的破坏分析与变形特征

IF 4.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Engineering Failure Analysis Pub Date : 2024-10-21 DOI:10.1016/j.engfailanal.2024.108990
Jiaqing Gao , Qiyao Wang , Hongquan Teng , Dongxing Liu
{"title":"地震下斜交地裂缝盾构隧道的破坏分析与变形特征","authors":"Jiaqing Gao ,&nbsp;Qiyao Wang ,&nbsp;Hongquan Teng ,&nbsp;Dongxing Liu","doi":"10.1016/j.engfailanal.2024.108990","DOIUrl":null,"url":null,"abstract":"<div><div>In order to study the deformation law and failure characteristics of shield tunnel obliquely crossing ground fissure under earthquake action, taking the shield tunnel of Xi ’an Metro Line 8 crossing f<sub>3</sub> ground fissure as the engineering background, the 1: 20 shaking table model test method was used to analyze the strain of shield tunnel, the contact pressure with surrounding rock soil, the dislocation of segment and the axial force of bolt in detail, and the seismic damage mechanism and failure characteristics of shield tunnel obliquely crossing ground fissure were obtained. The test results show that under the action of earthquake, the shield tunnel has complex three-dimensional deformation characteristics, among which the vertical deformation is the most obvious. The deformation is mainly concentrated in the location of the ground fissure. The tensile strain and contact pressure of the hanging wall of the tunnel segment are greater than the strain value and contact pressure of the footwall. Because the vertical deformation of the tunnel is the largest, the bolts at the vault and the arch bottom are most obviously pulled. Excavation after the test, it can be seen that the tunnel appeared the phenomenon of ring joint opening, lining cracking and other damage. Under the action of the earthquake, the shield tunnel across the ground fissure is mainly subjected to tensile failure. The failure area is within 10 m from the ground fissure in the hanging wall and footwall, and the total length is 20 m. The closer to the ground fissure, the more serious the damage. The research results provide a scientific and reasonable reference for the subsequent construction and disaster prevention and mitigation design of Xi ’an Metro.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure analysis and deformation characteristics of shield tunnel obliquely crossing ground fissure under earthquake\",\"authors\":\"Jiaqing Gao ,&nbsp;Qiyao Wang ,&nbsp;Hongquan Teng ,&nbsp;Dongxing Liu\",\"doi\":\"10.1016/j.engfailanal.2024.108990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to study the deformation law and failure characteristics of shield tunnel obliquely crossing ground fissure under earthquake action, taking the shield tunnel of Xi ’an Metro Line 8 crossing f<sub>3</sub> ground fissure as the engineering background, the 1: 20 shaking table model test method was used to analyze the strain of shield tunnel, the contact pressure with surrounding rock soil, the dislocation of segment and the axial force of bolt in detail, and the seismic damage mechanism and failure characteristics of shield tunnel obliquely crossing ground fissure were obtained. The test results show that under the action of earthquake, the shield tunnel has complex three-dimensional deformation characteristics, among which the vertical deformation is the most obvious. The deformation is mainly concentrated in the location of the ground fissure. The tensile strain and contact pressure of the hanging wall of the tunnel segment are greater than the strain value and contact pressure of the footwall. Because the vertical deformation of the tunnel is the largest, the bolts at the vault and the arch bottom are most obviously pulled. Excavation after the test, it can be seen that the tunnel appeared the phenomenon of ring joint opening, lining cracking and other damage. Under the action of the earthquake, the shield tunnel across the ground fissure is mainly subjected to tensile failure. The failure area is within 10 m from the ground fissure in the hanging wall and footwall, and the total length is 20 m. The closer to the ground fissure, the more serious the damage. The research results provide a scientific and reasonable reference for the subsequent construction and disaster prevention and mitigation design of Xi ’an Metro.</div></div>\",\"PeriodicalId\":11677,\"journal\":{\"name\":\"Engineering Failure Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Failure Analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350630724010367\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630724010367","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为研究盾构隧道斜穿地裂缝在地震作用下的变形规律和破坏特征,以西安地铁八号线盾构隧道穿越f3地裂缝为工程背景,采用1:20振动台模型试验方法,详细分析了盾构隧道的应变、与围岩土体的接触压力、节段变位和螺栓轴力等,得到了盾构隧道斜穿地裂缝的震害机理和破坏特征。试验结果表明,在地震作用下,盾构隧道具有复杂的三维变形特征,其中垂直变形最为明显。变形主要集中在地裂缝位置。隧道段悬壁的拉应变和接触压力大于底壁的应变值和接触压力。由于隧道的垂直变形最大,拱顶和拱底的螺栓受拉最明显。试验后开挖,可以看到隧道出现了环缝张开、衬砌开裂等破坏现象。在地震作用下,穿越地裂缝的盾构隧道主要是受拉破坏。破坏区域在悬壁和底壁距地裂缝 10 米范围内,总长度为 20 米,越靠近地裂缝破坏越严重。研究成果为西安地铁后续建设和防灾减灾设计提供了科学合理的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Failure analysis and deformation characteristics of shield tunnel obliquely crossing ground fissure under earthquake
In order to study the deformation law and failure characteristics of shield tunnel obliquely crossing ground fissure under earthquake action, taking the shield tunnel of Xi ’an Metro Line 8 crossing f3 ground fissure as the engineering background, the 1: 20 shaking table model test method was used to analyze the strain of shield tunnel, the contact pressure with surrounding rock soil, the dislocation of segment and the axial force of bolt in detail, and the seismic damage mechanism and failure characteristics of shield tunnel obliquely crossing ground fissure were obtained. The test results show that under the action of earthquake, the shield tunnel has complex three-dimensional deformation characteristics, among which the vertical deformation is the most obvious. The deformation is mainly concentrated in the location of the ground fissure. The tensile strain and contact pressure of the hanging wall of the tunnel segment are greater than the strain value and contact pressure of the footwall. Because the vertical deformation of the tunnel is the largest, the bolts at the vault and the arch bottom are most obviously pulled. Excavation after the test, it can be seen that the tunnel appeared the phenomenon of ring joint opening, lining cracking and other damage. Under the action of the earthquake, the shield tunnel across the ground fissure is mainly subjected to tensile failure. The failure area is within 10 m from the ground fissure in the hanging wall and footwall, and the total length is 20 m. The closer to the ground fissure, the more serious the damage. The research results provide a scientific and reasonable reference for the subsequent construction and disaster prevention and mitigation design of Xi ’an Metro.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Failure Analysis
Engineering Failure Analysis 工程技术-材料科学:表征与测试
CiteScore
7.70
自引率
20.00%
发文量
956
审稿时长
47 days
期刊介绍: Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies. Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials. Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged. Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.
期刊最新文献
Buckling and failure mechanisms of asymmetric composite sandwich panels subjected to shear loadings Editorial Board Research on TBM parameter optimization based on failure probability The impact of water contamination on the performance failure of lithium grease Corrosion fatigue analysis of suspenders on continuous suspension bridge under combined action of wind and traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1