Weiguo Li , Weijie Wu , Juanping Xu , Yao Zhou , Jinxu Li
{"title":"淬火钢和隔热钢的氢致开裂机理分析","authors":"Weiguo Li , Weijie Wu , Juanping Xu , Yao Zhou , Jinxu Li","doi":"10.1016/j.corsci.2024.112516","DOIUrl":null,"url":null,"abstract":"<div><div>Quenching and partitioning (Q&P) steels are extensively used in the automotive industry due to their exceptional strength and ductility. However, the impact of hydrogen embrittlement (HE) poses a huge challenge to the safe service of Q&P steels, highlighting the necessity to investigate the hydrogen-induced cracking mechanisms. This study investigates the hydrogen-induced failure mechanisms in Q&P steels through experiments and finite element simulations, focusing on microstructure, local stress heterogeneity, hydrogen distribution characteristics, and hydrogen-induced cracking. The results reveal that hydrogen cracking nucleation in Q&P steel is primarily due to the further accumulation of hydrogen in local high-stress martensitic/austenitic regions.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112516"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of hydrogen-induced cracking mechanism in quenching and partitioning steels\",\"authors\":\"Weiguo Li , Weijie Wu , Juanping Xu , Yao Zhou , Jinxu Li\",\"doi\":\"10.1016/j.corsci.2024.112516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quenching and partitioning (Q&P) steels are extensively used in the automotive industry due to their exceptional strength and ductility. However, the impact of hydrogen embrittlement (HE) poses a huge challenge to the safe service of Q&P steels, highlighting the necessity to investigate the hydrogen-induced cracking mechanisms. This study investigates the hydrogen-induced failure mechanisms in Q&P steels through experiments and finite element simulations, focusing on microstructure, local stress heterogeneity, hydrogen distribution characteristics, and hydrogen-induced cracking. The results reveal that hydrogen cracking nucleation in Q&P steel is primarily due to the further accumulation of hydrogen in local high-stress martensitic/austenitic regions.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"240 \",\"pages\":\"Article 112516\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X2400711X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X2400711X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of hydrogen-induced cracking mechanism in quenching and partitioning steels
Quenching and partitioning (Q&P) steels are extensively used in the automotive industry due to their exceptional strength and ductility. However, the impact of hydrogen embrittlement (HE) poses a huge challenge to the safe service of Q&P steels, highlighting the necessity to investigate the hydrogen-induced cracking mechanisms. This study investigates the hydrogen-induced failure mechanisms in Q&P steels through experiments and finite element simulations, focusing on microstructure, local stress heterogeneity, hydrogen distribution characteristics, and hydrogen-induced cracking. The results reveal that hydrogen cracking nucleation in Q&P steel is primarily due to the further accumulation of hydrogen in local high-stress martensitic/austenitic regions.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.