用于高稳定性锂离子电池负极的内电场和界面键合工程异质结研究

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-10-19 DOI:10.1016/j.vacuum.2024.113756
Guoxu Zheng , Xinzhe Huang , Minqiang Xu , Liwei Mao , Qian Zhang , Zhuo Yuan , Zhiwei Liu , Mingxin Song
{"title":"用于高稳定性锂离子电池负极的内电场和界面键合工程异质结研究","authors":"Guoxu Zheng ,&nbsp;Xinzhe Huang ,&nbsp;Minqiang Xu ,&nbsp;Liwei Mao ,&nbsp;Qian Zhang ,&nbsp;Zhuo Yuan ,&nbsp;Zhiwei Liu ,&nbsp;Mingxin Song","doi":"10.1016/j.vacuum.2024.113756","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub> heterojunctions were grown on NF by a simple secondary hydrothermal method. DFT-based calculations show that the SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub> heterojunction has excellent thermal stability with a low band gap (1.7 eV) and Li<sup>+</sup> diffusion barrier (0.822 eV), which is attributed to the generation of an internal electric field that promotes carrier transport. Electrochemical tests showed that the initial capacity of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF was 1401 mAh g<sup>−1</sup>, and its capacity was 970 mAh g<sup>−1</sup> after 200 charge/discharge cycles, which is attributed to metal-oxygen bonds at the interface and a special microsphere structure to improve the stability of the materials. In addition, the electrochemical behavior of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF is dominated by capacitive behavior, resulting in excellent rate performance. The synthesis of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF provides a reference for designing other heterojunctions anode materials.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113756"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of internal electric field and interface bonding engineered heterojunction for high stability lithium-ion battery anode\",\"authors\":\"Guoxu Zheng ,&nbsp;Xinzhe Huang ,&nbsp;Minqiang Xu ,&nbsp;Liwei Mao ,&nbsp;Qian Zhang ,&nbsp;Zhuo Yuan ,&nbsp;Zhiwei Liu ,&nbsp;Mingxin Song\",\"doi\":\"10.1016/j.vacuum.2024.113756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub> heterojunctions were grown on NF by a simple secondary hydrothermal method. DFT-based calculations show that the SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub> heterojunction has excellent thermal stability with a low band gap (1.7 eV) and Li<sup>+</sup> diffusion barrier (0.822 eV), which is attributed to the generation of an internal electric field that promotes carrier transport. Electrochemical tests showed that the initial capacity of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF was 1401 mAh g<sup>−1</sup>, and its capacity was 970 mAh g<sup>−1</sup> after 200 charge/discharge cycles, which is attributed to metal-oxygen bonds at the interface and a special microsphere structure to improve the stability of the materials. In addition, the electrochemical behavior of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF is dominated by capacitive behavior, resulting in excellent rate performance. The synthesis of SnO<sub>2</sub>/Ni<sub>2</sub>SnO<sub>4</sub>/NF provides a reference for designing other heterojunctions anode materials.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"231 \",\"pages\":\"Article 113756\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24008029\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008029","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用简单的二次水热法在 NF 上生长了 SnO2/Ni2SnO4 异质结。基于 DFT 的计算表明,SnO2/Ni2SnO4 异质结具有优异的热稳定性,具有较低的带隙(1.7 eV)和 Li+ 扩散势垒(0.822 eV),这归功于内部电场的产生促进了载流子的传输。电化学测试表明,SnO2/Ni2SnO4/NF 的初始容量为 1401 mAh g-1,经过 200 次充放电循环后,其容量为 970 mAh g-1,这归功于界面上的金属氧键和特殊的微球结构提高了材料的稳定性。此外,SnO2/Ni2SnO4/NF 的电化学行为以电容行为为主,因此具有优异的速率性能。SnO2/Ni2SnO4/NF 的合成为设计其他异质结阳极材料提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of internal electric field and interface bonding engineered heterojunction for high stability lithium-ion battery anode
In this paper, SnO2/Ni2SnO4 heterojunctions were grown on NF by a simple secondary hydrothermal method. DFT-based calculations show that the SnO2/Ni2SnO4 heterojunction has excellent thermal stability with a low band gap (1.7 eV) and Li+ diffusion barrier (0.822 eV), which is attributed to the generation of an internal electric field that promotes carrier transport. Electrochemical tests showed that the initial capacity of SnO2/Ni2SnO4/NF was 1401 mAh g−1, and its capacity was 970 mAh g−1 after 200 charge/discharge cycles, which is attributed to metal-oxygen bonds at the interface and a special microsphere structure to improve the stability of the materials. In addition, the electrochemical behavior of SnO2/Ni2SnO4/NF is dominated by capacitive behavior, resulting in excellent rate performance. The synthesis of SnO2/Ni2SnO4/NF provides a reference for designing other heterojunctions anode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
First-principles investigation of optical and thermoelectric properties of Na2InCu(F/Cl)6 double perovskites for energy harvesting devices Editorial Board and Vacuum units On the choice of filters and their parameters in the determination of EEDF in gas discharge plasma from the current-voltage characteristic of the Langmuir probe Obtaining ultrafine-grained structure in copper/steel/copper multi-laminated composite by different accumulative roll bonding methods The morphology-dependent on the electrochemical performance of molybdenum trioxide in supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1