Maassoumeh Barghchi , Bill Grace , Nicole Edwards , Julian Bolleter , Paula Hooper
{"title":"当前和未来气候情景下的公园热舒适和冷却机制","authors":"Maassoumeh Barghchi , Bill Grace , Nicole Edwards , Julian Bolleter , Paula Hooper","doi":"10.1016/j.ufug.2024.128533","DOIUrl":null,"url":null,"abstract":"<div><div>Extreme heat is Australia’s most perilous natural hazard, and increasing urban temperatures due to climate change are a growing concern. Consequently, there is growing interest in developing nature-based solutions (i.e., greenery and vegetated surfaces) to cool urban areas. Appropriately designed urban parks are anticipated to be crucial for maintaining thermal comfort as temperatures rise. The two main diurnal cooling mechanisms of urban parks are shade provision and vegetation transpiration. However, limited studies have examined the cooling performance of vegetation through transpiration, especially in the southern hemisphere. This study addresses this gap by examining the microclimatic conditions, cooling benefits, and thermal performance of a typical neighbourhood park in Perth, Western Australia, with a focus on the cooling performance of vegetation through shade and transpiration. Present and future microclimates were modelled and simulated for average and hottest summer days based on 25 years of local weather data and projections for 2090 under the Representative Concentration Pathway (RCP) 8.5 scenario. The findings reveal that trees provided diurnal cooling benefits for park users by lowering the Universal Thermal Comfort Index (UTCI) by up to 17°C, with this benefit persisting in projected 2090 conditions. This cooling benefit was predominantly achieved through shade provision, with marginal contributions from transpiration. Additionally, on hot days, as leaf temperature exceeded 30°C, increased stomatal resistance led to reduced transpiration. Therefore, more attention must be paid to transpiration cooling limits due to stomatal closure during hot hours to improve cooling performance in park design. Moreover, comparing different plant species’ behaviour and adaptability on hot days is crucial, especially in future climatic conditions.</div></div>","PeriodicalId":49394,"journal":{"name":"Urban Forestry & Urban Greening","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Park thermal comfort and cooling mechanisms in present and future climate scenarios\",\"authors\":\"Maassoumeh Barghchi , Bill Grace , Nicole Edwards , Julian Bolleter , Paula Hooper\",\"doi\":\"10.1016/j.ufug.2024.128533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extreme heat is Australia’s most perilous natural hazard, and increasing urban temperatures due to climate change are a growing concern. Consequently, there is growing interest in developing nature-based solutions (i.e., greenery and vegetated surfaces) to cool urban areas. Appropriately designed urban parks are anticipated to be crucial for maintaining thermal comfort as temperatures rise. The two main diurnal cooling mechanisms of urban parks are shade provision and vegetation transpiration. However, limited studies have examined the cooling performance of vegetation through transpiration, especially in the southern hemisphere. This study addresses this gap by examining the microclimatic conditions, cooling benefits, and thermal performance of a typical neighbourhood park in Perth, Western Australia, with a focus on the cooling performance of vegetation through shade and transpiration. Present and future microclimates were modelled and simulated for average and hottest summer days based on 25 years of local weather data and projections for 2090 under the Representative Concentration Pathway (RCP) 8.5 scenario. The findings reveal that trees provided diurnal cooling benefits for park users by lowering the Universal Thermal Comfort Index (UTCI) by up to 17°C, with this benefit persisting in projected 2090 conditions. This cooling benefit was predominantly achieved through shade provision, with marginal contributions from transpiration. Additionally, on hot days, as leaf temperature exceeded 30°C, increased stomatal resistance led to reduced transpiration. Therefore, more attention must be paid to transpiration cooling limits due to stomatal closure during hot hours to improve cooling performance in park design. Moreover, comparing different plant species’ behaviour and adaptability on hot days is crucial, especially in future climatic conditions.</div></div>\",\"PeriodicalId\":49394,\"journal\":{\"name\":\"Urban Forestry & Urban Greening\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Forestry & Urban Greening\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1618866724003315\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Forestry & Urban Greening","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1618866724003315","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Park thermal comfort and cooling mechanisms in present and future climate scenarios
Extreme heat is Australia’s most perilous natural hazard, and increasing urban temperatures due to climate change are a growing concern. Consequently, there is growing interest in developing nature-based solutions (i.e., greenery and vegetated surfaces) to cool urban areas. Appropriately designed urban parks are anticipated to be crucial for maintaining thermal comfort as temperatures rise. The two main diurnal cooling mechanisms of urban parks are shade provision and vegetation transpiration. However, limited studies have examined the cooling performance of vegetation through transpiration, especially in the southern hemisphere. This study addresses this gap by examining the microclimatic conditions, cooling benefits, and thermal performance of a typical neighbourhood park in Perth, Western Australia, with a focus on the cooling performance of vegetation through shade and transpiration. Present and future microclimates were modelled and simulated for average and hottest summer days based on 25 years of local weather data and projections for 2090 under the Representative Concentration Pathway (RCP) 8.5 scenario. The findings reveal that trees provided diurnal cooling benefits for park users by lowering the Universal Thermal Comfort Index (UTCI) by up to 17°C, with this benefit persisting in projected 2090 conditions. This cooling benefit was predominantly achieved through shade provision, with marginal contributions from transpiration. Additionally, on hot days, as leaf temperature exceeded 30°C, increased stomatal resistance led to reduced transpiration. Therefore, more attention must be paid to transpiration cooling limits due to stomatal closure during hot hours to improve cooling performance in park design. Moreover, comparing different plant species’ behaviour and adaptability on hot days is crucial, especially in future climatic conditions.
期刊介绍:
Urban Forestry and Urban Greening is a refereed, international journal aimed at presenting high-quality research with urban and peri-urban woody and non-woody vegetation and its use, planning, design, establishment and management as its main topics. Urban Forestry and Urban Greening concentrates on all tree-dominated (as joint together in the urban forest) as well as other green resources in and around urban areas, such as woodlands, public and private urban parks and gardens, urban nature areas, street tree and square plantations, botanical gardens and cemeteries.
The journal welcomes basic and applied research papers, as well as review papers and short communications. Contributions should focus on one or more of the following aspects:
-Form and functions of urban forests and other vegetation, including aspects of urban ecology.
-Policy-making, planning and design related to urban forests and other vegetation.
-Selection and establishment of tree resources and other vegetation for urban environments.
-Management of urban forests and other vegetation.
Original contributions of a high academic standard are invited from a wide range of disciplines and fields, including forestry, biology, horticulture, arboriculture, landscape ecology, pathology, soil science, hydrology, landscape architecture, landscape planning, urban planning and design, economics, sociology, environmental psychology, public health, and education.