利用谷歌地球引擎中的集合学习和多源卫星数据提高蜜蜂饲料等级绘图的准确性

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES Scientific African Pub Date : 2024-10-15 DOI:10.1016/j.sciaf.2024.e02415
Filagot Mengistu , Binyam Tesfaw Hailu , Temesgen Alemayehu Abera , Janne Heiskanen , Tadesse Terefe Zeleke , Tino Johansson , Petri Pellikka
{"title":"利用谷歌地球引擎中的集合学习和多源卫星数据提高蜜蜂饲料等级绘图的准确性","authors":"Filagot Mengistu ,&nbsp;Binyam Tesfaw Hailu ,&nbsp;Temesgen Alemayehu Abera ,&nbsp;Janne Heiskanen ,&nbsp;Tadesse Terefe Zeleke ,&nbsp;Tino Johansson ,&nbsp;Petri Pellikka","doi":"10.1016/j.sciaf.2024.e02415","DOIUrl":null,"url":null,"abstract":"<div><div>In semi-arid agro-pastoral environments of Africa, beekeeping is widely recognized as an important activity to improve and diversify livelihoods. Although the scientific identification of suitable honey bees (<em>Apis mellifera ssps.</em>) forages may guide beekeepers to set up apiaries or to timely move honey bee colonies to exploit bee forage resources available in various landscapes, the characterization and mapping of bee forage classes is challenging. We evaluated how various data sources and classification algorithms in Google Earth Engine (GEE) affect the accuracy of honey bee forage class mapping in a semi-arid region of Ethiopia. Predictors derived from multi-source satellite data, such as high-resolution Planet imagery (P), Sentinel 1 RADAR (S1), Sentinel 2 multispectral (S2), and Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) were tested and best predictors were identified using Forward Feature Selection (FFS). Four machine learning algorithms (Gradient Tree Boost (GTB), Random Forest (RF), Classification and Regression Trees (CART), and Support Vector Machine (SVM)), all available in GEE, were compared and ensembled for honey bee forage class mapping. The results show that the highest accuracy is obtained by all four algorithms when combining P, S1, S2, and DEM compared to using predictors from a single data source or any other combinations. GTB had higher overall accuracy (90.9 %) than RF (88.2 %), CART (85.5 %), or SVM (79.9 %). Nonetheless, the highest overall accuracy (94.7 %) was obtained when integrating the four machine learning algorithms in an Ensemble Learning Approach (ELA). Applying ELA improved the classification accuracy by 3.8 %, 6.5 %, 9.2 %, and 14.8 % compared to single learner classification algorithms (i.e., GTB, RF, CART, and SVM, respectively). This study demonstrates an improved classification accuracy for honey bee forage class mapping in tropical rangeland by applying ELA, which can provide a better approach for monitoring and managing bee forage resources.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02415"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the accuracy of honey bee forage class mapping using ensemble learning and multi-source satellite data in Google Earth Engine\",\"authors\":\"Filagot Mengistu ,&nbsp;Binyam Tesfaw Hailu ,&nbsp;Temesgen Alemayehu Abera ,&nbsp;Janne Heiskanen ,&nbsp;Tadesse Terefe Zeleke ,&nbsp;Tino Johansson ,&nbsp;Petri Pellikka\",\"doi\":\"10.1016/j.sciaf.2024.e02415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In semi-arid agro-pastoral environments of Africa, beekeeping is widely recognized as an important activity to improve and diversify livelihoods. Although the scientific identification of suitable honey bees (<em>Apis mellifera ssps.</em>) forages may guide beekeepers to set up apiaries or to timely move honey bee colonies to exploit bee forage resources available in various landscapes, the characterization and mapping of bee forage classes is challenging. We evaluated how various data sources and classification algorithms in Google Earth Engine (GEE) affect the accuracy of honey bee forage class mapping in a semi-arid region of Ethiopia. Predictors derived from multi-source satellite data, such as high-resolution Planet imagery (P), Sentinel 1 RADAR (S1), Sentinel 2 multispectral (S2), and Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) were tested and best predictors were identified using Forward Feature Selection (FFS). Four machine learning algorithms (Gradient Tree Boost (GTB), Random Forest (RF), Classification and Regression Trees (CART), and Support Vector Machine (SVM)), all available in GEE, were compared and ensembled for honey bee forage class mapping. The results show that the highest accuracy is obtained by all four algorithms when combining P, S1, S2, and DEM compared to using predictors from a single data source or any other combinations. GTB had higher overall accuracy (90.9 %) than RF (88.2 %), CART (85.5 %), or SVM (79.9 %). Nonetheless, the highest overall accuracy (94.7 %) was obtained when integrating the four machine learning algorithms in an Ensemble Learning Approach (ELA). Applying ELA improved the classification accuracy by 3.8 %, 6.5 %, 9.2 %, and 14.8 % compared to single learner classification algorithms (i.e., GTB, RF, CART, and SVM, respectively). This study demonstrates an improved classification accuracy for honey bee forage class mapping in tropical rangeland by applying ELA, which can provide a better approach for monitoring and managing bee forage resources.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"26 \",\"pages\":\"Article e02415\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227624003570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227624003570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在非洲半干旱农牧环境中,养蜂被广泛认为是改善生计和使生计多样化的一项重要活动。虽然科学鉴定合适的蜜蜂(Apis mellifera sps.)饲料可以指导养蜂人建立养蜂场或及时转移蜜蜂群落,以利用各种地貌中的蜜蜂饲料资源,但蜜蜂饲料类别的特征描述和绘图却具有挑战性。我们评估了谷歌地球引擎(GEE)中的各种数据源和分类算法如何影响埃塞俄比亚半干旱地区蜜蜂饲料类别绘图的准确性。我们测试了从高分辨率行星图像(P)、哨兵 1 号雷达(S1)、哨兵 2 号多光谱(S2)和航天飞机雷达地形任务(SRTM)数字高程模型(DEM)等多源卫星数据中提取的预测因子,并使用前向特征选择(FFS)确定了最佳预测因子。对 GEE 中的四种机器学习算法(梯度树提升算法 (GTB)、随机森林算法 (RF)、分类和回归树算法 (CART) 以及支持向量机算法 (SVM))进行了比较和组合,以绘制蜜蜂饲草类别图。结果表明,与使用来自单一数据源的预测因子或任何其他组合相比,当组合 P、S1、S2 和 DEM 时,所有四种算法都能获得最高的准确率。GTB 的总体准确率(90.9%)高于 RF(88.2%)、CART(85.5%)或 SVM(79.9%)。然而,将四种机器学习算法集成到一个集合学习方法(ELA)中时,获得了最高的总体准确率(94.7%)。与单一学习器分类算法(即 GTB、RF、CART 和 SVM)相比,采用 ELA 可将分类准确率分别提高 3.8%、6.5%、9.2% 和 14.8%。这项研究表明,应用 ELA 可以提高热带牧场蜜蜂饲草类别绘图的分类精度,从而为蜜蜂饲草资源的监测和管理提供更好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the accuracy of honey bee forage class mapping using ensemble learning and multi-source satellite data in Google Earth Engine
In semi-arid agro-pastoral environments of Africa, beekeeping is widely recognized as an important activity to improve and diversify livelihoods. Although the scientific identification of suitable honey bees (Apis mellifera ssps.) forages may guide beekeepers to set up apiaries or to timely move honey bee colonies to exploit bee forage resources available in various landscapes, the characterization and mapping of bee forage classes is challenging. We evaluated how various data sources and classification algorithms in Google Earth Engine (GEE) affect the accuracy of honey bee forage class mapping in a semi-arid region of Ethiopia. Predictors derived from multi-source satellite data, such as high-resolution Planet imagery (P), Sentinel 1 RADAR (S1), Sentinel 2 multispectral (S2), and Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) were tested and best predictors were identified using Forward Feature Selection (FFS). Four machine learning algorithms (Gradient Tree Boost (GTB), Random Forest (RF), Classification and Regression Trees (CART), and Support Vector Machine (SVM)), all available in GEE, were compared and ensembled for honey bee forage class mapping. The results show that the highest accuracy is obtained by all four algorithms when combining P, S1, S2, and DEM compared to using predictors from a single data source or any other combinations. GTB had higher overall accuracy (90.9 %) than RF (88.2 %), CART (85.5 %), or SVM (79.9 %). Nonetheless, the highest overall accuracy (94.7 %) was obtained when integrating the four machine learning algorithms in an Ensemble Learning Approach (ELA). Applying ELA improved the classification accuracy by 3.8 %, 6.5 %, 9.2 %, and 14.8 % compared to single learner classification algorithms (i.e., GTB, RF, CART, and SVM, respectively). This study demonstrates an improved classification accuracy for honey bee forage class mapping in tropical rangeland by applying ELA, which can provide a better approach for monitoring and managing bee forage resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
期刊最新文献
Modified Fractional Power Series Method for solving fractional partial differential equations Typologies and determinants of coping responses to forage and water scarcity among livestock farmers in south-western Uganda: Does gender matter? Fusarium oxysporum and soil nutrient amendments provide short-term inhibition of Cosmopolites sordidus raising questions on biopesticide and plant nutrition potentials in tissue culture banana Evaluating the impact of internal control systems on corporate performance of Ghanaian banks: The moderating role of information technology Entrepreneurial bricolage: A systematic literature network analysis and TCCM approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1