Shouyan Xu, Xiaohan Lu, Jianliang Chen, Yuwen An, Yong Li, Sheng Wang
{"title":"中国溅射中子源快速循环同步加速器的动态磁场误差修正","authors":"Shouyan Xu, Xiaohan Lu, Jianliang Chen, Yuwen An, Yong Li, Sheng Wang","doi":"10.1016/j.nima.2024.169991","DOIUrl":null,"url":null,"abstract":"<div><div>At a Rapid Cycling Synchrotron (RCS), dynamic magnetic field errors, such as magnetic field tracking errors and dynamic fringe field effects, can cause time-dependent tune shift during beam acceleration. If the tune shift is significant enough to pass through resonance lines, it can lead to emittance growth and beam losses. Correcting time-dependent tune shift during acceleration is crucial for a RCS. Modulating the exciting current and magnetic field of quadrupole magnets at a RCS, which are powered by resonant circuits, is challenging during the ramping process. Correcting time-dependent tune shift at a RCS poses a significant technical challenge. We have proposed a method for correcting time-dependent tune shift at the rapid cycling synchrotron of China Spallation Neutron Source (CSNS), based on waveform compensation at the quadrupole magnets. This approach involves modulating the magnetic field variation process by injecting time harmonic exciting current into the quadrupole magnets. This method has been validated during the CSNS beam commissioning and has been applied at the RCS of CSNS to correct various dynamic magnetic field errors.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1069 ","pages":"Article 169991"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction of dynamic magnetic field errors at the rapid cycling synchrotron of China Spallation Neutron Source\",\"authors\":\"Shouyan Xu, Xiaohan Lu, Jianliang Chen, Yuwen An, Yong Li, Sheng Wang\",\"doi\":\"10.1016/j.nima.2024.169991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>At a Rapid Cycling Synchrotron (RCS), dynamic magnetic field errors, such as magnetic field tracking errors and dynamic fringe field effects, can cause time-dependent tune shift during beam acceleration. If the tune shift is significant enough to pass through resonance lines, it can lead to emittance growth and beam losses. Correcting time-dependent tune shift during acceleration is crucial for a RCS. Modulating the exciting current and magnetic field of quadrupole magnets at a RCS, which are powered by resonant circuits, is challenging during the ramping process. Correcting time-dependent tune shift at a RCS poses a significant technical challenge. We have proposed a method for correcting time-dependent tune shift at the rapid cycling synchrotron of China Spallation Neutron Source (CSNS), based on waveform compensation at the quadrupole magnets. This approach involves modulating the magnetic field variation process by injecting time harmonic exciting current into the quadrupole magnets. This method has been validated during the CSNS beam commissioning and has been applied at the RCS of CSNS to correct various dynamic magnetic field errors.</div></div>\",\"PeriodicalId\":19359,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"volume\":\"1069 \",\"pages\":\"Article 169991\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168900224009173\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224009173","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Correction of dynamic magnetic field errors at the rapid cycling synchrotron of China Spallation Neutron Source
At a Rapid Cycling Synchrotron (RCS), dynamic magnetic field errors, such as magnetic field tracking errors and dynamic fringe field effects, can cause time-dependent tune shift during beam acceleration. If the tune shift is significant enough to pass through resonance lines, it can lead to emittance growth and beam losses. Correcting time-dependent tune shift during acceleration is crucial for a RCS. Modulating the exciting current and magnetic field of quadrupole magnets at a RCS, which are powered by resonant circuits, is challenging during the ramping process. Correcting time-dependent tune shift at a RCS poses a significant technical challenge. We have proposed a method for correcting time-dependent tune shift at the rapid cycling synchrotron of China Spallation Neutron Source (CSNS), based on waveform compensation at the quadrupole magnets. This approach involves modulating the magnetic field variation process by injecting time harmonic exciting current into the quadrupole magnets. This method has been validated during the CSNS beam commissioning and has been applied at the RCS of CSNS to correct various dynamic magnetic field errors.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.