{"title":"电网在住宅楼运行引起的温室气体排放中的作用:多年回顾性模拟研究","authors":"A.L. Rouws, R.C.G.M. Loonen, J.L.M. Hensen","doi":"10.1016/j.enbuild.2024.114870","DOIUrl":null,"url":null,"abstract":"<div><div>In view of the growing shares of renewables in the electricity grid in combination with the electrification of <span>hvac</span> (heating, ventilation, air conditioning) systems in residential buildings, the grid intensity (in terms of carbon dioxide emissions per unit of electric energy) becomes increasingly sensitive to weather conditions, and synchronicity between weather and the grid becomes a more critical aspect in building performance assessment. Using building performance simulation techniques to seek robust building designs requires awareness about the uncertainties in circumstantial factors that affect performance. This 2016 – 2022 retrospective study highlights the effects of using low or high temporal resolution grid emissions intensity data on projected operation-induced carbon dioxide emissions for a terraced dwelling in the Netherlands. Building fabric quality, the occupant profile, and systems configurations (i.e., <span>hvac</span> and photovoltaics) are varied to investigate the effects of the applied grid model resolution. This study shows that ignoring high-resolution grid intensity data is getting increasingly problematic; applying low resolution (annual) instead of high-resolution (15-minute) grid intensity data leads to an increasingly unjustified optimistic assessment both for net and gross emissions (either or not allowing for carbon displacement by feeding locally generated electricity into the grid).</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"324 ","pages":"Article 114870"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of the electricity grid in operation-induced greenhouse gas emissions by a residential building: A multi-year retrospective simulation study\",\"authors\":\"A.L. Rouws, R.C.G.M. Loonen, J.L.M. Hensen\",\"doi\":\"10.1016/j.enbuild.2024.114870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In view of the growing shares of renewables in the electricity grid in combination with the electrification of <span>hvac</span> (heating, ventilation, air conditioning) systems in residential buildings, the grid intensity (in terms of carbon dioxide emissions per unit of electric energy) becomes increasingly sensitive to weather conditions, and synchronicity between weather and the grid becomes a more critical aspect in building performance assessment. Using building performance simulation techniques to seek robust building designs requires awareness about the uncertainties in circumstantial factors that affect performance. This 2016 – 2022 retrospective study highlights the effects of using low or high temporal resolution grid emissions intensity data on projected operation-induced carbon dioxide emissions for a terraced dwelling in the Netherlands. Building fabric quality, the occupant profile, and systems configurations (i.e., <span>hvac</span> and photovoltaics) are varied to investigate the effects of the applied grid model resolution. This study shows that ignoring high-resolution grid intensity data is getting increasingly problematic; applying low resolution (annual) instead of high-resolution (15-minute) grid intensity data leads to an increasingly unjustified optimistic assessment both for net and gross emissions (either or not allowing for carbon displacement by feeding locally generated electricity into the grid).</div></div>\",\"PeriodicalId\":11641,\"journal\":{\"name\":\"Energy and Buildings\",\"volume\":\"324 \",\"pages\":\"Article 114870\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378778824009861\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824009861","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
The role of the electricity grid in operation-induced greenhouse gas emissions by a residential building: A multi-year retrospective simulation study
In view of the growing shares of renewables in the electricity grid in combination with the electrification of hvac (heating, ventilation, air conditioning) systems in residential buildings, the grid intensity (in terms of carbon dioxide emissions per unit of electric energy) becomes increasingly sensitive to weather conditions, and synchronicity between weather and the grid becomes a more critical aspect in building performance assessment. Using building performance simulation techniques to seek robust building designs requires awareness about the uncertainties in circumstantial factors that affect performance. This 2016 – 2022 retrospective study highlights the effects of using low or high temporal resolution grid emissions intensity data on projected operation-induced carbon dioxide emissions for a terraced dwelling in the Netherlands. Building fabric quality, the occupant profile, and systems configurations (i.e., hvac and photovoltaics) are varied to investigate the effects of the applied grid model resolution. This study shows that ignoring high-resolution grid intensity data is getting increasingly problematic; applying low resolution (annual) instead of high-resolution (15-minute) grid intensity data leads to an increasingly unjustified optimistic assessment both for net and gross emissions (either or not allowing for carbon displacement by feeding locally generated electricity into the grid).
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.