S.J. VanBommel , S. Sharma , T.V. Kizovski , C.M. Heirwegh , J.R. Christian , A.L. Knight , B. Ganly , A.C. Allwood , J.A. Hurowitz , M.M. Tice , M.L. Cable , W.T. Elam , M.W.M. Jones , B.C. Clark , A.H. Treiman , M.E. Schmidt , Y. Liu , A. Das
{"title":"利用 \"毅力 \"号火星探测器上的 X 射线岩石化学行星仪器对杰泽罗陨石坑进行稀土元素评估:铈的案例研究","authors":"S.J. VanBommel , S. Sharma , T.V. Kizovski , C.M. Heirwegh , J.R. Christian , A.L. Knight , B. Ganly , A.C. Allwood , J.A. Hurowitz , M.M. Tice , M.L. Cable , W.T. Elam , M.W.M. Jones , B.C. Clark , A.H. Treiman , M.E. Schmidt , Y. Liu , A. Das","doi":"10.1016/j.icarus.2024.116355","DOIUrl":null,"url":null,"abstract":"<div><div>The “Planetary Instrument for X-ray Lithochemistry” (PIXL) X-ray spectrometer conducts in situ geochemical analyses of martian rocks and regolith interrogated by the Mars 2020 rover, <em>Perseverance</em>. In addition to quantifying primary rock-forming elements, PIXL can quantify trace elements that in turn can provide additional constraints on the geologic history of Mars. Accurate quantifications of trace elements can require additional analytical techniques to mitigate experimental, background, and crystalline effects within PIXL spectra. In this study, we focus on reducing the impact of these effects and investigate the potential presence of rare earth elements (REEs). The study specifically investigates cerium given its typical relative abundance in many geologic materials compared to other REEs and its potential to mimic fluorescence features produced by organics under deep UV excitation. A detailed analysis of PIXL targets analyzed through the first 887 martian days of the <em>Perseverance</em> mission did not produce any conclusive Ce detections. Phosphorus-enriched materials analyzed by PIXL are estimated to contain sub-675 ppm Ce and sulfate-enriched materials sub-450 ppm Ce. The method presented can help constrain limits on the abundance of additional trace elements of interest that also face a similar analytical burden. PIXL's potential to assess REE abundances, outside of yttrium, is limited for expected concentrations in surface materials. Determining most REE concentrations in materials interrogated by <em>Perseverance</em> will therefore likely require terrestrial analyses.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"425 ","pages":"Article 116355"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare earth element assessment in Jezero crater using the Planetary Instrument for X-ray Lithochemistry on the Mars 2020 rover Perseverance: A case study of cerium\",\"authors\":\"S.J. VanBommel , S. Sharma , T.V. Kizovski , C.M. Heirwegh , J.R. Christian , A.L. Knight , B. Ganly , A.C. Allwood , J.A. Hurowitz , M.M. Tice , M.L. Cable , W.T. Elam , M.W.M. Jones , B.C. Clark , A.H. Treiman , M.E. Schmidt , Y. Liu , A. Das\",\"doi\":\"10.1016/j.icarus.2024.116355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The “Planetary Instrument for X-ray Lithochemistry” (PIXL) X-ray spectrometer conducts in situ geochemical analyses of martian rocks and regolith interrogated by the Mars 2020 rover, <em>Perseverance</em>. In addition to quantifying primary rock-forming elements, PIXL can quantify trace elements that in turn can provide additional constraints on the geologic history of Mars. Accurate quantifications of trace elements can require additional analytical techniques to mitigate experimental, background, and crystalline effects within PIXL spectra. In this study, we focus on reducing the impact of these effects and investigate the potential presence of rare earth elements (REEs). The study specifically investigates cerium given its typical relative abundance in many geologic materials compared to other REEs and its potential to mimic fluorescence features produced by organics under deep UV excitation. A detailed analysis of PIXL targets analyzed through the first 887 martian days of the <em>Perseverance</em> mission did not produce any conclusive Ce detections. Phosphorus-enriched materials analyzed by PIXL are estimated to contain sub-675 ppm Ce and sulfate-enriched materials sub-450 ppm Ce. The method presented can help constrain limits on the abundance of additional trace elements of interest that also face a similar analytical burden. PIXL's potential to assess REE abundances, outside of yttrium, is limited for expected concentrations in surface materials. Determining most REE concentrations in materials interrogated by <em>Perseverance</em> will therefore likely require terrestrial analyses.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"425 \",\"pages\":\"Article 116355\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524004159\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004159","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Rare earth element assessment in Jezero crater using the Planetary Instrument for X-ray Lithochemistry on the Mars 2020 rover Perseverance: A case study of cerium
The “Planetary Instrument for X-ray Lithochemistry” (PIXL) X-ray spectrometer conducts in situ geochemical analyses of martian rocks and regolith interrogated by the Mars 2020 rover, Perseverance. In addition to quantifying primary rock-forming elements, PIXL can quantify trace elements that in turn can provide additional constraints on the geologic history of Mars. Accurate quantifications of trace elements can require additional analytical techniques to mitigate experimental, background, and crystalline effects within PIXL spectra. In this study, we focus on reducing the impact of these effects and investigate the potential presence of rare earth elements (REEs). The study specifically investigates cerium given its typical relative abundance in many geologic materials compared to other REEs and its potential to mimic fluorescence features produced by organics under deep UV excitation. A detailed analysis of PIXL targets analyzed through the first 887 martian days of the Perseverance mission did not produce any conclusive Ce detections. Phosphorus-enriched materials analyzed by PIXL are estimated to contain sub-675 ppm Ce and sulfate-enriched materials sub-450 ppm Ce. The method presented can help constrain limits on the abundance of additional trace elements of interest that also face a similar analytical burden. PIXL's potential to assess REE abundances, outside of yttrium, is limited for expected concentrations in surface materials. Determining most REE concentrations in materials interrogated by Perseverance will therefore likely require terrestrial analyses.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.