V2O5-MnO2 纳米复合材料作为高性能水性超级电容器的高效电极材料

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2024-10-17 DOI:10.1016/j.mtsust.2024.101010
Tapan K. Pani , Sadananda Muduli , Kiran Kumar Garlapati , Surendra Kumar Martha
{"title":"V2O5-MnO2 纳米复合材料作为高性能水性超级电容器的高效电极材料","authors":"Tapan K. Pani ,&nbsp;Sadananda Muduli ,&nbsp;Kiran Kumar Garlapati ,&nbsp;Surendra Kumar Martha","doi":"10.1016/j.mtsust.2024.101010","DOIUrl":null,"url":null,"abstract":"<div><div>Redox-active supercapacitors are very interesting due to their high energy density (&gt;25 Wh kg<sup>−1</sup> at device level) and redox charge storage mechanism. In this work, V<sub>2</sub>O<sub>5</sub>-MnO<sub>2</sub> nanocomposites are synthesized by a scalable hydrothermal approach. MnO<sub>2</sub> in V<sub>2</sub>O<sub>5</sub> provides better structural stability with reasonable electrochemical performance, in which V<sub>2</sub>O<sub>5</sub> enhances the cyclic stability and rate capabilities. The V<sub>2</sub>O<sub>5</sub>-MnO<sub>2</sub> -based electrodes deliver a specific capacitance of 266 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and are stable up to 6500 cycles with 97 % capacitance retention at 5 A g<sup>−1</sup>. The kinetic study depicts that composite electrodes have a 64 % diffusive and 36 % capacitive charge storage contribution to the overall charge storage at 1 mV s<sup>−1</sup>. In symmetric full cells, the composite materials show a wide active potential window of 2.5 V and retain 83 % capacitance after 10000 continuous GCD cycles at an applied current density of 2 A g<sup>−1</sup>. The promising charge storage performance is due to a suitable conducting matrix and the effective coating of MnO<sub>2</sub> nanoparticles over the unique V<sub>2</sub>O<sub>5</sub> niddle shape (two-dimensional) micro-rods.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101010"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"V2O5-MnO2 nanocomposites as an efficient electrode material for high-performance aqueous supercapacitors\",\"authors\":\"Tapan K. Pani ,&nbsp;Sadananda Muduli ,&nbsp;Kiran Kumar Garlapati ,&nbsp;Surendra Kumar Martha\",\"doi\":\"10.1016/j.mtsust.2024.101010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Redox-active supercapacitors are very interesting due to their high energy density (&gt;25 Wh kg<sup>−1</sup> at device level) and redox charge storage mechanism. In this work, V<sub>2</sub>O<sub>5</sub>-MnO<sub>2</sub> nanocomposites are synthesized by a scalable hydrothermal approach. MnO<sub>2</sub> in V<sub>2</sub>O<sub>5</sub> provides better structural stability with reasonable electrochemical performance, in which V<sub>2</sub>O<sub>5</sub> enhances the cyclic stability and rate capabilities. The V<sub>2</sub>O<sub>5</sub>-MnO<sub>2</sub> -based electrodes deliver a specific capacitance of 266 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and are stable up to 6500 cycles with 97 % capacitance retention at 5 A g<sup>−1</sup>. The kinetic study depicts that composite electrodes have a 64 % diffusive and 36 % capacitive charge storage contribution to the overall charge storage at 1 mV s<sup>−1</sup>. In symmetric full cells, the composite materials show a wide active potential window of 2.5 V and retain 83 % capacitance after 10000 continuous GCD cycles at an applied current density of 2 A g<sup>−1</sup>. The promising charge storage performance is due to a suitable conducting matrix and the effective coating of MnO<sub>2</sub> nanoparticles over the unique V<sub>2</sub>O<sub>5</sub> niddle shape (two-dimensional) micro-rods.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"28 \",\"pages\":\"Article 101010\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724003464\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003464","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原活性超级电容器因其高能量密度(器件级为 25 Wh kg-1)和氧化还原电荷存储机制而备受关注。本研究采用可扩展的水热法合成了 V2O5-MnO2 纳米复合材料。V2O5 中的 MnO2 具有更好的结构稳定性和合理的电化学性能,其中 V2O5 增强了循环稳定性和速率能力。基于 V2O5-MnO2 的电极在 0.5 A g-1 电流条件下的比电容为 266 F g-1,在 5 A g-1 电流条件下的比电容保持率为 97%,可稳定循环 6500 次。动力学研究表明,在 1 mV s-1 时,复合电极对整体电荷存储的贡献率为 64% 扩散电荷存储和 36% 容性电荷存储。在对称全电池中,复合材料显示出 2.5 V 的宽活动电位窗口,在 2 A g-1 的应用电流密度下,经过 10000 次连续 GCD 循环后,电容保持率为 83%。良好的电荷存储性能归功于合适的导电基质以及在独特的 V2O5 中型(二维)微棒上有效地包覆 MnO2 纳米粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
V2O5-MnO2 nanocomposites as an efficient electrode material for high-performance aqueous supercapacitors
Redox-active supercapacitors are very interesting due to their high energy density (>25 Wh kg−1 at device level) and redox charge storage mechanism. In this work, V2O5-MnO2 nanocomposites are synthesized by a scalable hydrothermal approach. MnO2 in V2O5 provides better structural stability with reasonable electrochemical performance, in which V2O5 enhances the cyclic stability and rate capabilities. The V2O5-MnO2 -based electrodes deliver a specific capacitance of 266 F g−1 at 0.5 A g−1 and are stable up to 6500 cycles with 97 % capacitance retention at 5 A g−1. The kinetic study depicts that composite electrodes have a 64 % diffusive and 36 % capacitive charge storage contribution to the overall charge storage at 1 mV s−1. In symmetric full cells, the composite materials show a wide active potential window of 2.5 V and retain 83 % capacitance after 10000 continuous GCD cycles at an applied current density of 2 A g−1. The promising charge storage performance is due to a suitable conducting matrix and the effective coating of MnO2 nanoparticles over the unique V2O5 niddle shape (two-dimensional) micro-rods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Corrigendum to ‘Optimization of transition metal sulfide through sputtered transition metal nitride thin film for hybrid supercapacitors’ [25, 100680] Zinc oxide and its engineered derivative nanomaterials: Insight into energy, environmental, medical, agricultural, and food applications Recent insights on Z-scheme and S-scheme photocatalysts for nitrogen conversion to ammonia: A review Study on corrosion resistance and microstructure of modified sediment geopolymer materials Cu-Bi2S3 nanorods promote reactive oxygen species production for photodynamic therapy of prostate cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1