Yifan Wang , Haoran Cheng , Ze Cheng , Gongliang Zhang , Hongman Hou , Jingran Bi , Shuang Yan , Hongshun Hao
{"title":"基于 AgBiS2 和 Ag/g-C3N4 与金纳米粒子的肠炎沙门氏菌灵敏光电化学诱导技术","authors":"Yifan Wang , Haoran Cheng , Ze Cheng , Gongliang Zhang , Hongman Hou , Jingran Bi , Shuang Yan , Hongshun Hao","doi":"10.1016/j.jphotochem.2024.116093","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an ultrasensitive photoelectric chemical sensor based on AgBiS<sub>2</sub> and Ag/g-C<sub>3</sub>N<sub>4</sub> was prepared for the detection of <em>Salmonella enteritidis</em> (SE). The AgBiS<sub>2</sub> and Ag/g-C<sub>3</sub>N<sub>4</sub> were modified on FTO by layer modification to increase the photoelectric activity of the electrode, the gold nanoparticles continued to be modified, and the aptamer of SE was fixed by Au<img>S bond to realize the specific detection of SE. Compared with the AgBiS<sub>2</sub>-modified electrode, the electrode prepared by the composite material produced a significantly enhanced and stable photocurrent signal under Xe lamp irradiation. The detection limit of sensor was 2.18 CFU/mL, and ideally, the concentration of SE detection would show a good linear relationship between 6.72 × 10<sup>3</sup> CFU/mL and 6.72 × 10<sup>8</sup> CFU/mL. The constructed photoelectrochemical sensor has strong sensitivity, wide linear range, and good selectivity for potential pathogenic bacteria. Therefore, this study provides a very promising photoelectric chemical platform for the detection of SE.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive photoelectrochemical aptasensing of Salmonella enteritidis based on AgBiS2 and Ag/g-C3N4 with gold nanoparticles\",\"authors\":\"Yifan Wang , Haoran Cheng , Ze Cheng , Gongliang Zhang , Hongman Hou , Jingran Bi , Shuang Yan , Hongshun Hao\",\"doi\":\"10.1016/j.jphotochem.2024.116093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, an ultrasensitive photoelectric chemical sensor based on AgBiS<sub>2</sub> and Ag/g-C<sub>3</sub>N<sub>4</sub> was prepared for the detection of <em>Salmonella enteritidis</em> (SE). The AgBiS<sub>2</sub> and Ag/g-C<sub>3</sub>N<sub>4</sub> were modified on FTO by layer modification to increase the photoelectric activity of the electrode, the gold nanoparticles continued to be modified, and the aptamer of SE was fixed by Au<img>S bond to realize the specific detection of SE. Compared with the AgBiS<sub>2</sub>-modified electrode, the electrode prepared by the composite material produced a significantly enhanced and stable photocurrent signal under Xe lamp irradiation. The detection limit of sensor was 2.18 CFU/mL, and ideally, the concentration of SE detection would show a good linear relationship between 6.72 × 10<sup>3</sup> CFU/mL and 6.72 × 10<sup>8</sup> CFU/mL. The constructed photoelectrochemical sensor has strong sensitivity, wide linear range, and good selectivity for potential pathogenic bacteria. Therefore, this study provides a very promising photoelectric chemical platform for the detection of SE.</div></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024006373\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024006373","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Sensitive photoelectrochemical aptasensing of Salmonella enteritidis based on AgBiS2 and Ag/g-C3N4 with gold nanoparticles
In this paper, an ultrasensitive photoelectric chemical sensor based on AgBiS2 and Ag/g-C3N4 was prepared for the detection of Salmonella enteritidis (SE). The AgBiS2 and Ag/g-C3N4 were modified on FTO by layer modification to increase the photoelectric activity of the electrode, the gold nanoparticles continued to be modified, and the aptamer of SE was fixed by AuS bond to realize the specific detection of SE. Compared with the AgBiS2-modified electrode, the electrode prepared by the composite material produced a significantly enhanced and stable photocurrent signal under Xe lamp irradiation. The detection limit of sensor was 2.18 CFU/mL, and ideally, the concentration of SE detection would show a good linear relationship between 6.72 × 103 CFU/mL and 6.72 × 108 CFU/mL. The constructed photoelectrochemical sensor has strong sensitivity, wide linear range, and good selectivity for potential pathogenic bacteria. Therefore, this study provides a very promising photoelectric chemical platform for the detection of SE.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.