Hongwei Yan, Taixiang Liu, Lin Huang, Ke Yang, Changpeng Li, Zhuo Zhang, Yujie Qian
{"title":"二氧化硅减反射涂层缺陷的准原位表征和激光损伤研究","authors":"Hongwei Yan, Taixiang Liu, Lin Huang, Ke Yang, Changpeng Li, Zhuo Zhang, Yujie Qian","doi":"10.1007/s10971-024-06544-0","DOIUrl":null,"url":null,"abstract":"<p>Silica sol-gel antireflection coatings are used in high-power lasers due to their excellent laser damage resistance. These coatings are prepared using silica nanoparticles, and flaws generated during the coating preparation process are considered one of the factors that can lead to laser damage. Ring-shape flaws of micrometer-size usually appear on the surface of silica sol-gel antireflection coating. The morphologies of these flaws were investigated through optical microscopy, contact-type surface profilometer and scanning electron microscope. The diameters of the ring-shape flaws are from several micrometers to tens of micrometers. It has been demonstrated that the ring-shape flaws are nodule-like structures containing closely packed silica nanoparticles. The quasi-in-situ laser damage tests of the coated samples show the ring-shape flaws have a low damage probability. The formation of ring-shape flaws on the silica sol-gel coating is related to the polydispersity of the colloidal silica nanoparticles. Through the analysis of the size distribution of silica nanoparticles, a mechanism for flaws formation is proposed.</p>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"594 - 600"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-in-situ characterization and laser damage investigation of flaws in silica antireflection coatings\",\"authors\":\"Hongwei Yan, Taixiang Liu, Lin Huang, Ke Yang, Changpeng Li, Zhuo Zhang, Yujie Qian\",\"doi\":\"10.1007/s10971-024-06544-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silica sol-gel antireflection coatings are used in high-power lasers due to their excellent laser damage resistance. These coatings are prepared using silica nanoparticles, and flaws generated during the coating preparation process are considered one of the factors that can lead to laser damage. Ring-shape flaws of micrometer-size usually appear on the surface of silica sol-gel antireflection coating. The morphologies of these flaws were investigated through optical microscopy, contact-type surface profilometer and scanning electron microscope. The diameters of the ring-shape flaws are from several micrometers to tens of micrometers. It has been demonstrated that the ring-shape flaws are nodule-like structures containing closely packed silica nanoparticles. The quasi-in-situ laser damage tests of the coated samples show the ring-shape flaws have a low damage probability. The formation of ring-shape flaws on the silica sol-gel coating is related to the polydispersity of the colloidal silica nanoparticles. Through the analysis of the size distribution of silica nanoparticles, a mechanism for flaws formation is proposed.</p>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 2\",\"pages\":\"594 - 600\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06544-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06544-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Quasi-in-situ characterization and laser damage investigation of flaws in silica antireflection coatings
Silica sol-gel antireflection coatings are used in high-power lasers due to their excellent laser damage resistance. These coatings are prepared using silica nanoparticles, and flaws generated during the coating preparation process are considered one of the factors that can lead to laser damage. Ring-shape flaws of micrometer-size usually appear on the surface of silica sol-gel antireflection coating. The morphologies of these flaws were investigated through optical microscopy, contact-type surface profilometer and scanning electron microscope. The diameters of the ring-shape flaws are from several micrometers to tens of micrometers. It has been demonstrated that the ring-shape flaws are nodule-like structures containing closely packed silica nanoparticles. The quasi-in-situ laser damage tests of the coated samples show the ring-shape flaws have a low damage probability. The formation of ring-shape flaws on the silica sol-gel coating is related to the polydispersity of the colloidal silica nanoparticles. Through the analysis of the size distribution of silica nanoparticles, a mechanism for flaws formation is proposed.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.