{"title":"系列烯化氮高能晶体 Nx(x = 4、8、10)的高压相变:DFT-D 比较研究","authors":"Xiaowei Wu, Qiyao Yu","doi":"10.1007/s00894-024-06190-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>High-pressure chemistry has advantages in exploring novel energetic materials and is the key to the development of new high-energy materials. The complexity and danger of experimental processes require a deeper understanding by advanced simulation techniques. Therefore, a high-precision comparative DFT-D study was performed to investigate the effect of pressure on series of catenated nitrogen energetic crystals. The results show that there exist phase transitions for N<sub>4</sub>, N<sub>8</sub>, and N<sub>10</sub> at 4 GPa, 3 GPa, and 2 GPa respectively, which are embodied in various properties of these crystals. Studies on band gap and DOS indicate pressure-induced improvement on the ability for electrons transition from occupied orbitals to empty ones. Hirshfeld surface analysis qualitatively suggests that hydrogen bonding interactions are becoming dominant inter-molecular interactions. The topological analysis quantitatively reveals that pressure is beneficial to enhancing the inter-molecular hydrogen bonding energy, thereby playing an important role in the stability of high-pressure phases. The discussions on mechanical properties imply that pressure can improve the rigidity of these energetic systems and enhance their mechanical properties. Our findings evidence the high-pressure phase transitions for catenated nitrogen energetic crystals, which lay the theoretical foundation for the development of novel energetic materials.</p><h3>Methods</h3><p>Series of catenated nitrogen energetic crystals N<sub>4</sub>, N<sub>8</sub> and N<sub>10</sub> were obtained from experiments. Optimizations were performed by GGA/PBE functional and G06 dispersion correction within the framework of CASTEP code, and the cutoff energies of the plane waves were set to 700 eV. The particular moiety in the crystals was extracted by Multiwfn 3.6 and subsequent analysis was conducted by Gaussian 09W package.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-pressure phase transitions of series of catenated nitrogen energetic crystals Nx (x = 4, 8, 10): A comparative DFT-D study\",\"authors\":\"Xiaowei Wu, Qiyao Yu\",\"doi\":\"10.1007/s00894-024-06190-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>High-pressure chemistry has advantages in exploring novel energetic materials and is the key to the development of new high-energy materials. The complexity and danger of experimental processes require a deeper understanding by advanced simulation techniques. Therefore, a high-precision comparative DFT-D study was performed to investigate the effect of pressure on series of catenated nitrogen energetic crystals. The results show that there exist phase transitions for N<sub>4</sub>, N<sub>8</sub>, and N<sub>10</sub> at 4 GPa, 3 GPa, and 2 GPa respectively, which are embodied in various properties of these crystals. Studies on band gap and DOS indicate pressure-induced improvement on the ability for electrons transition from occupied orbitals to empty ones. Hirshfeld surface analysis qualitatively suggests that hydrogen bonding interactions are becoming dominant inter-molecular interactions. The topological analysis quantitatively reveals that pressure is beneficial to enhancing the inter-molecular hydrogen bonding energy, thereby playing an important role in the stability of high-pressure phases. The discussions on mechanical properties imply that pressure can improve the rigidity of these energetic systems and enhance their mechanical properties. Our findings evidence the high-pressure phase transitions for catenated nitrogen energetic crystals, which lay the theoretical foundation for the development of novel energetic materials.</p><h3>Methods</h3><p>Series of catenated nitrogen energetic crystals N<sub>4</sub>, N<sub>8</sub> and N<sub>10</sub> were obtained from experiments. Optimizations were performed by GGA/PBE functional and G06 dispersion correction within the framework of CASTEP code, and the cutoff energies of the plane waves were set to 700 eV. The particular moiety in the crystals was extracted by Multiwfn 3.6 and subsequent analysis was conducted by Gaussian 09W package.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06190-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06190-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
High-pressure phase transitions of series of catenated nitrogen energetic crystals Nx (x = 4, 8, 10): A comparative DFT-D study
Context
High-pressure chemistry has advantages in exploring novel energetic materials and is the key to the development of new high-energy materials. The complexity and danger of experimental processes require a deeper understanding by advanced simulation techniques. Therefore, a high-precision comparative DFT-D study was performed to investigate the effect of pressure on series of catenated nitrogen energetic crystals. The results show that there exist phase transitions for N4, N8, and N10 at 4 GPa, 3 GPa, and 2 GPa respectively, which are embodied in various properties of these crystals. Studies on band gap and DOS indicate pressure-induced improvement on the ability for electrons transition from occupied orbitals to empty ones. Hirshfeld surface analysis qualitatively suggests that hydrogen bonding interactions are becoming dominant inter-molecular interactions. The topological analysis quantitatively reveals that pressure is beneficial to enhancing the inter-molecular hydrogen bonding energy, thereby playing an important role in the stability of high-pressure phases. The discussions on mechanical properties imply that pressure can improve the rigidity of these energetic systems and enhance their mechanical properties. Our findings evidence the high-pressure phase transitions for catenated nitrogen energetic crystals, which lay the theoretical foundation for the development of novel energetic materials.
Methods
Series of catenated nitrogen energetic crystals N4, N8 and N10 were obtained from experiments. Optimizations were performed by GGA/PBE functional and G06 dispersion correction within the framework of CASTEP code, and the cutoff energies of the plane waves were set to 700 eV. The particular moiety in the crystals was extracted by Multiwfn 3.6 and subsequent analysis was conducted by Gaussian 09W package.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.