了解和模拟染料分散聚合物共混物中的机械变色:从原子洞察到宏观特性

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2024-10-29 DOI:10.1007/s00894-024-06174-x
Qinfan Wang, Alistar Ottochian, Michele Turelli, Andrea Pucci, Ilaria Ciofini, Carlo Adamo
{"title":"了解和模拟染料分散聚合物共混物中的机械变色:从原子洞察到宏观特性","authors":"Qinfan Wang,&nbsp;Alistar Ottochian,&nbsp;Michele Turelli,&nbsp;Andrea Pucci,&nbsp;Ilaria Ciofini,&nbsp;Carlo Adamo","doi":"10.1007/s00894-024-06174-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>In this work, we propose a computational protocol enabling the simulation of mechanochromic responses in dye-dispersed polymer blends. The main objective is the modeling of the molecular-level structural changes responsible for the modulation of the photophysical properties that lead to the mechanochromic phenomenon. In this demonstrative study, we focus on predicting the changes in optical absorption displayed by a model system consisting of a dimer of a tetraphenylethylene derivative dispersed in a polyethylene matrix. The blend is subjected to an external stimulus that causes a modulation of the polymer matrix density that translates, in turn, into the emergence of specific mechanical constraints on the optically active dimers. The accurate description of this phenomenon requires the reliable sampling of the dimer configurations induced by the interaction with the matrix under stress. These molecular geometries are associated with modified electronic structures that confer novel absorption responses to the dispersed dyes.</p><h3>Methods</h3><p>In the present contribution, the sampling of these structures is achieved through classical molecular dynamics (MD) simulations including a model element to apply an anisotropic mechanical force. This element allows the microscopic modeling of the chains’ and dyes’ structural rearrangements under stress. After the sampling, we compare the results of two approaches for the prediction of the optical response: (i) the calculation of a mean response from a statistical average over quantum chemical calculations on the sampled MD structures and (ii) a prediction via a more expensive hybrid scheme allowing the relaxation of the sampled molecular geometries in the presence of the matrix constraints.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding and simulating mechanochromism in dye-dispersed polymer blends: from atomistic insights to macroscopic properties\",\"authors\":\"Qinfan Wang,&nbsp;Alistar Ottochian,&nbsp;Michele Turelli,&nbsp;Andrea Pucci,&nbsp;Ilaria Ciofini,&nbsp;Carlo Adamo\",\"doi\":\"10.1007/s00894-024-06174-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>In this work, we propose a computational protocol enabling the simulation of mechanochromic responses in dye-dispersed polymer blends. The main objective is the modeling of the molecular-level structural changes responsible for the modulation of the photophysical properties that lead to the mechanochromic phenomenon. In this demonstrative study, we focus on predicting the changes in optical absorption displayed by a model system consisting of a dimer of a tetraphenylethylene derivative dispersed in a polyethylene matrix. The blend is subjected to an external stimulus that causes a modulation of the polymer matrix density that translates, in turn, into the emergence of specific mechanical constraints on the optically active dimers. The accurate description of this phenomenon requires the reliable sampling of the dimer configurations induced by the interaction with the matrix under stress. These molecular geometries are associated with modified electronic structures that confer novel absorption responses to the dispersed dyes.</p><h3>Methods</h3><p>In the present contribution, the sampling of these structures is achieved through classical molecular dynamics (MD) simulations including a model element to apply an anisotropic mechanical force. This element allows the microscopic modeling of the chains’ and dyes’ structural rearrangements under stress. After the sampling, we compare the results of two approaches for the prediction of the optical response: (i) the calculation of a mean response from a statistical average over quantum chemical calculations on the sampled MD structures and (ii) a prediction via a more expensive hybrid scheme allowing the relaxation of the sampled molecular geometries in the presence of the matrix constraints.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06174-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06174-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景在这项研究中,我们提出了一种能够模拟染料分散聚合物混合物中机械变色反应的计算方案。其主要目的是对导致机致变色现象的光物理特性调制的分子级结构变化进行建模。在这项示范研究中,我们重点预测了由分散在聚乙烯基体中的四苯乙烯衍生物二聚体组成的模型系统所显示的光吸收变化。混合物受到外部刺激后,聚合物基体密度会发生变化,进而对光学活性二聚体产生特定的机械约束。要准确描述这一现象,就必须对二聚体在应力作用下与基质相互作用所产生的构型进行可靠的取样。在本文中,这些结构的取样是通过经典的分子动力学(MD)模拟实现的,其中包括应用各向异性机械力的模型元素。通过该模型元素,可以对应力作用下的链和染料结构重排进行微观建模。取样后,我们比较了两种光学响应预测方法的结果:(i) 根据对采样 MD 结构进行量子化学计算的统计平均值计算平均响应;(ii) 通过更昂贵的混合方案进行预测,允许在存在矩阵约束的情况下放松采样分子几何结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding and simulating mechanochromism in dye-dispersed polymer blends: from atomistic insights to macroscopic properties

Context

In this work, we propose a computational protocol enabling the simulation of mechanochromic responses in dye-dispersed polymer blends. The main objective is the modeling of the molecular-level structural changes responsible for the modulation of the photophysical properties that lead to the mechanochromic phenomenon. In this demonstrative study, we focus on predicting the changes in optical absorption displayed by a model system consisting of a dimer of a tetraphenylethylene derivative dispersed in a polyethylene matrix. The blend is subjected to an external stimulus that causes a modulation of the polymer matrix density that translates, in turn, into the emergence of specific mechanical constraints on the optically active dimers. The accurate description of this phenomenon requires the reliable sampling of the dimer configurations induced by the interaction with the matrix under stress. These molecular geometries are associated with modified electronic structures that confer novel absorption responses to the dispersed dyes.

Methods

In the present contribution, the sampling of these structures is achieved through classical molecular dynamics (MD) simulations including a model element to apply an anisotropic mechanical force. This element allows the microscopic modeling of the chains’ and dyes’ structural rearrangements under stress. After the sampling, we compare the results of two approaches for the prediction of the optical response: (i) the calculation of a mean response from a statistical average over quantum chemical calculations on the sampled MD structures and (ii) a prediction via a more expensive hybrid scheme allowing the relaxation of the sampled molecular geometries in the presence of the matrix constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Insight into the structural and dynamic properties of novel HSP90 inhibitors through DFT calculations and molecular dynamics simulations Improved energy equations and thermal functions for diatomic molecules: a generalized fractional derivative approach NO2 properties that affect its reaction with pristine and Pt-doped SnS2: a gas sensor study Theoretical study of the synergistic effect between glyceryl monooleate lubricant and carboxymethylcellulose in reducing the coefficient of friction of water-based drilling fluids Constructing, in silico, molecular self-aggregates and micro-hydrated complexes of oxirene and thiirene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1