Mohd Bilal, Saket Gupta, Pitshou N. Bokoro, Gulshan Sharma
{"title":"配电网络中使用人工蜂鸟算法优化电动汽车和可再生能源整合的概率方法","authors":"Mohd Bilal, Saket Gupta, Pitshou N. Bokoro, Gulshan Sharma","doi":"10.1049/rpg2.13074","DOIUrl":null,"url":null,"abstract":"<p>The adoption of electric vehicles (EVs) is crucial for reducing pollution from traditional automobiles. Strategic placement of electric vehicle charging stations (EVCS) is needed to meet demand while minimizing impacts on the electrical grid. This article outlines a practical method to identify optimal EVCS locations within the IEEE 69 bus system. The transition to EVs affects the electrical distribution network, requiring consideration of voltage regulation, power loss, stability, reliability, and energy loss costs when deploying EVCS. To manage increased energy demands, the article recommends integrating solar distributed generation (SDG) units at strategic points in the network, creating a self-sustaining system. The study explores the resilience of the distribution system with EVCS and SDGs through eight case studies (CS), examining EVCS deployment scenarios with and without SDG integration. The impact of slow and fast EV charging on system objectives is also analysed. The artificial hummingbird algorithm is used to solve the allocation problem, with results compared to other optimization methods. Notably, active power loss decreased from 224.67 kW (CS1) to 53.35 kW (CS8), and reactive power loss was reduced by 71.4% in CS8 compared to CS1.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2305-2325"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13074","citationCount":"0","resultStr":"{\"title\":\"A probabilistic approach for optimal integration of EVs and RES using artificial hummingbird algorithm in distribution network\",\"authors\":\"Mohd Bilal, Saket Gupta, Pitshou N. Bokoro, Gulshan Sharma\",\"doi\":\"10.1049/rpg2.13074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The adoption of electric vehicles (EVs) is crucial for reducing pollution from traditional automobiles. Strategic placement of electric vehicle charging stations (EVCS) is needed to meet demand while minimizing impacts on the electrical grid. This article outlines a practical method to identify optimal EVCS locations within the IEEE 69 bus system. The transition to EVs affects the electrical distribution network, requiring consideration of voltage regulation, power loss, stability, reliability, and energy loss costs when deploying EVCS. To manage increased energy demands, the article recommends integrating solar distributed generation (SDG) units at strategic points in the network, creating a self-sustaining system. The study explores the resilience of the distribution system with EVCS and SDGs through eight case studies (CS), examining EVCS deployment scenarios with and without SDG integration. The impact of slow and fast EV charging on system objectives is also analysed. The artificial hummingbird algorithm is used to solve the allocation problem, with results compared to other optimization methods. Notably, active power loss decreased from 224.67 kW (CS1) to 53.35 kW (CS8), and reactive power loss was reduced by 71.4% in CS8 compared to CS1.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 14\",\"pages\":\"2305-2325\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13074\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A probabilistic approach for optimal integration of EVs and RES using artificial hummingbird algorithm in distribution network
The adoption of electric vehicles (EVs) is crucial for reducing pollution from traditional automobiles. Strategic placement of electric vehicle charging stations (EVCS) is needed to meet demand while minimizing impacts on the electrical grid. This article outlines a practical method to identify optimal EVCS locations within the IEEE 69 bus system. The transition to EVs affects the electrical distribution network, requiring consideration of voltage regulation, power loss, stability, reliability, and energy loss costs when deploying EVCS. To manage increased energy demands, the article recommends integrating solar distributed generation (SDG) units at strategic points in the network, creating a self-sustaining system. The study explores the resilience of the distribution system with EVCS and SDGs through eight case studies (CS), examining EVCS deployment scenarios with and without SDG integration. The impact of slow and fast EV charging on system objectives is also analysed. The artificial hummingbird algorithm is used to solve the allocation problem, with results compared to other optimization methods. Notably, active power loss decreased from 224.67 kW (CS1) to 53.35 kW (CS8), and reactive power loss was reduced by 71.4% in CS8 compared to CS1.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf