{"title":"离网零能耗建筑群优化规划的稳健双层程序设计方法","authors":"Reza Ghaffarpour, Saeid Zamanian","doi":"10.1049/rpg2.13083","DOIUrl":null,"url":null,"abstract":"<p>Electric power provision for all the customers is not always possible for distribution companies. Some customers are interested in serving their load through renewable resources regarding the climate situation. Electrically off-grid zero-energy building is an applicable concept, in which the electrical energy provision of the buildings is isolated from the power supply infrastructures. This paper introduces a robust bi-level programming model to create a cost-effective off-grid zero energy complex in Kish Island under risk management. The upper level of the planning is composed of two components, the passive design of buildings within the complex and the design of a stand-alone energy system. The passive design as an energy-saving tool includes the selection of insulation material for building external walls and finding the optimum thickness. Also, the stand-alone energy system design denotes the sizing of diesel generator, photovoltaic, and battery energy storage as the distributed energy resources. The lower-level problem optimally handles the annual scheduling of these resources to meet the complex demand under the impact of passive cooling. The Karush–Kuhn–Tucker condition method is used to solve this bi-level planning problem. Furthermore, the battery degradation is concerned via the throughput model to consider the replacement cost of the problem.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2394-2415"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13083","citationCount":"0","resultStr":"{\"title\":\"A robust bi-level programming approach for optimal planning an off-grid zero-energy complex\",\"authors\":\"Reza Ghaffarpour, Saeid Zamanian\",\"doi\":\"10.1049/rpg2.13083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electric power provision for all the customers is not always possible for distribution companies. Some customers are interested in serving their load through renewable resources regarding the climate situation. Electrically off-grid zero-energy building is an applicable concept, in which the electrical energy provision of the buildings is isolated from the power supply infrastructures. This paper introduces a robust bi-level programming model to create a cost-effective off-grid zero energy complex in Kish Island under risk management. The upper level of the planning is composed of two components, the passive design of buildings within the complex and the design of a stand-alone energy system. The passive design as an energy-saving tool includes the selection of insulation material for building external walls and finding the optimum thickness. Also, the stand-alone energy system design denotes the sizing of diesel generator, photovoltaic, and battery energy storage as the distributed energy resources. The lower-level problem optimally handles the annual scheduling of these resources to meet the complex demand under the impact of passive cooling. The Karush–Kuhn–Tucker condition method is used to solve this bi-level planning problem. Furthermore, the battery degradation is concerned via the throughput model to consider the replacement cost of the problem.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 14\",\"pages\":\"2394-2415\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13083\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13083\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A robust bi-level programming approach for optimal planning an off-grid zero-energy complex
Electric power provision for all the customers is not always possible for distribution companies. Some customers are interested in serving their load through renewable resources regarding the climate situation. Electrically off-grid zero-energy building is an applicable concept, in which the electrical energy provision of the buildings is isolated from the power supply infrastructures. This paper introduces a robust bi-level programming model to create a cost-effective off-grid zero energy complex in Kish Island under risk management. The upper level of the planning is composed of two components, the passive design of buildings within the complex and the design of a stand-alone energy system. The passive design as an energy-saving tool includes the selection of insulation material for building external walls and finding the optimum thickness. Also, the stand-alone energy system design denotes the sizing of diesel generator, photovoltaic, and battery energy storage as the distributed energy resources. The lower-level problem optimally handles the annual scheduling of these resources to meet the complex demand under the impact of passive cooling. The Karush–Kuhn–Tucker condition method is used to solve this bi-level planning problem. Furthermore, the battery degradation is concerned via the throughput model to consider the replacement cost of the problem.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf