基于先验知识的新型风能预测扩散模型

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS IET Renewable Power Generation Pub Date : 2024-08-25 DOI:10.1049/rpg2.13087
Li Han, Yingjie Cheng, Shuo Chen, Shiqi Wang, Junjie Wang
{"title":"基于先验知识的新型风能预测扩散模型","authors":"Li Han,&nbsp;Yingjie Cheng,&nbsp;Shuo Chen,&nbsp;Shiqi Wang,&nbsp;Junjie Wang","doi":"10.1049/rpg2.13087","DOIUrl":null,"url":null,"abstract":"<p>To improve the forecast accuracy of wind power, diffusion model based on prior knowledge (DMPK) is proposed. Different from the traditional diffusion model (DM), where the noise perturbation in the diffusion or generation process is random, the noise added in DMPK is modified aiming to the characteristics of wind power signals. The distribution of wind power forecast errors is not a standard Gaussian. Wind power forecast errors are related to forecast methods, weather conditions, and other factors, containing both random signals and certain regularity. This paper adapts the Gaussian distribution to fit the historical forecast error to represent the prior knowledge of wind power. Then, the sampling distribution is derived from its relationship with the fitted prior distribution to replace the standard Gaussian in DM. Taking the prior knowledge into account during the process of noise sampling, the data in the forward process of DMPK can be guided by the distribution of historical errors for diffusion, while the generated result by the reverse process is more consistent with the actual wind power signal. Finally, the superiority of the proposed method is verified by using the wind power data from two real-world wind farms.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2440-2454"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13087","citationCount":"0","resultStr":"{\"title\":\"A novel wind power forecast diffusion model based on prior knowledge\",\"authors\":\"Li Han,&nbsp;Yingjie Cheng,&nbsp;Shuo Chen,&nbsp;Shiqi Wang,&nbsp;Junjie Wang\",\"doi\":\"10.1049/rpg2.13087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the forecast accuracy of wind power, diffusion model based on prior knowledge (DMPK) is proposed. Different from the traditional diffusion model (DM), where the noise perturbation in the diffusion or generation process is random, the noise added in DMPK is modified aiming to the characteristics of wind power signals. The distribution of wind power forecast errors is not a standard Gaussian. Wind power forecast errors are related to forecast methods, weather conditions, and other factors, containing both random signals and certain regularity. This paper adapts the Gaussian distribution to fit the historical forecast error to represent the prior knowledge of wind power. Then, the sampling distribution is derived from its relationship with the fitted prior distribution to replace the standard Gaussian in DM. Taking the prior knowledge into account during the process of noise sampling, the data in the forward process of DMPK can be guided by the distribution of historical errors for diffusion, while the generated result by the reverse process is more consistent with the actual wind power signal. Finally, the superiority of the proposed method is verified by using the wind power data from two real-world wind farms.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 14\",\"pages\":\"2440-2454\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13087\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为提高风电预测精度,提出了基于先验知识的扩散模型(DMPK)。与传统的扩散模型(DM)中扩散或生成过程中的噪声扰动是随机的不同,DMPK 中添加的噪声是根据风电信号的特点修改的。风电预测误差的分布不是标准高斯分布。风电预测误差与预测方法、天气条件等因素有关,既包含随机信号,也有一定的规律性。本文采用高斯分布来拟合历史预测误差,以表示风电的先验知识。然后,根据其与拟合先验分布的关系推导出采样分布,以取代 DM 中的标准高斯分布。考虑到噪声采样过程中的先验知识,DMPK 正向过程中的数据可以在历史误差分布的指导下进行扩散,而反向过程生成的结果与实际风电信号更加一致。最后,利用两个实际风电场的风电数据验证了所提方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel wind power forecast diffusion model based on prior knowledge

To improve the forecast accuracy of wind power, diffusion model based on prior knowledge (DMPK) is proposed. Different from the traditional diffusion model (DM), where the noise perturbation in the diffusion or generation process is random, the noise added in DMPK is modified aiming to the characteristics of wind power signals. The distribution of wind power forecast errors is not a standard Gaussian. Wind power forecast errors are related to forecast methods, weather conditions, and other factors, containing both random signals and certain regularity. This paper adapts the Gaussian distribution to fit the historical forecast error to represent the prior knowledge of wind power. Then, the sampling distribution is derived from its relationship with the fitted prior distribution to replace the standard Gaussian in DM. Taking the prior knowledge into account during the process of noise sampling, the data in the forward process of DMPK can be guided by the distribution of historical errors for diffusion, while the generated result by the reverse process is more consistent with the actual wind power signal. Finally, the superiority of the proposed method is verified by using the wind power data from two real-world wind farms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
期刊最新文献
Impact of using text classifiers for standardising maintenance data of wind turbines on reliability calculations Optimal spatial arrangement of modules for large-scale photovoltaic farms in complex topography Wind speed probabilistic forecast based wind turbine selection and siting for urban environment Front Cover: A novel prediction method for low wind output processes under very few samples based on improved W-DCGAN Identification of transmission line voltage sag sources based on multi-location information convolutional transformer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1