利用基于对称性的设计策略开发高效的 TADF 活性铜(I)、银(I)和金(I)碳烯配合物

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-10-29 DOI:10.1039/d4qi01996b
Alexander Artem'ev, Maxim Rogovoy, Ilia Odud, Maria Davydova, Marianna I Rakhmanova, Pavel A. Petrov, Valery K Brel, Oleg I. Artyushin, Konstantin Brylev, Denis G. Samsonenko, Alexey S. Berezin, Dmitry Gorbunov, Nina P. Gritsan
{"title":"利用基于对称性的设计策略开发高效的 TADF 活性铜(I)、银(I)和金(I)碳烯配合物","authors":"Alexander Artem'ev, Maxim Rogovoy, Ilia Odud, Maria Davydova, Marianna I Rakhmanova, Pavel A. Petrov, Valery K Brel, Oleg I. Artyushin, Konstantin Brylev, Denis G. Samsonenko, Alexey S. Berezin, Dmitry Gorbunov, Nina P. Gritsan","doi":"10.1039/d4qi01996b","DOIUrl":null,"url":null,"abstract":"Coinage metal(I) complexes exhibiting thermally activated delayed fluorescence (TADF) have attracted worldwide attention as emitters for OLEDs. Reducing the decay times and increasing the quantum efficiency of such emitters is the current challenge in this hot field. To address this issue, a symmetry-based design strategy has been applied herein to obtain pseudo-symmetric complexes [M2-(tpbz)(NHC)2¬]2+ (M = Cu, Ag, Au) scaffolded by 1,2,4,5-tetrakis(diphenylphosphino)benzene (tpbz) and N-heterocyclic carbene (NHC) ligands. In the solid state, these compounds exhibit cyan-to-yellow TADF of the metal-to-ligand charge transfer type with excellent quantum yields (58–89%) and short decay times (2.5–15 µs). It has been shown that the Davydov model underlying the symmetry-based design strategy significantly increases the radiative constants of the “dimers” [M2¬(tpbz)(NHC)2¬]2+ compared to the “monomers” [M(dppb)(NHC)]+ based on 1,2-bis(diphenylphosphino)benzene (dppb). The practical potential of the designed TADF emitters has been demonstrated through their application as innovative thermo- and vapor-chromic emissive inks for advanced anti-counterfeiting labels.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward highly efficient TADF-active Cu(I), Ag(I) and Au(I) carbene complexes using symmetry-based design strategy\",\"authors\":\"Alexander Artem'ev, Maxim Rogovoy, Ilia Odud, Maria Davydova, Marianna I Rakhmanova, Pavel A. Petrov, Valery K Brel, Oleg I. Artyushin, Konstantin Brylev, Denis G. Samsonenko, Alexey S. Berezin, Dmitry Gorbunov, Nina P. Gritsan\",\"doi\":\"10.1039/d4qi01996b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coinage metal(I) complexes exhibiting thermally activated delayed fluorescence (TADF) have attracted worldwide attention as emitters for OLEDs. Reducing the decay times and increasing the quantum efficiency of such emitters is the current challenge in this hot field. To address this issue, a symmetry-based design strategy has been applied herein to obtain pseudo-symmetric complexes [M2-(tpbz)(NHC)2¬]2+ (M = Cu, Ag, Au) scaffolded by 1,2,4,5-tetrakis(diphenylphosphino)benzene (tpbz) and N-heterocyclic carbene (NHC) ligands. In the solid state, these compounds exhibit cyan-to-yellow TADF of the metal-to-ligand charge transfer type with excellent quantum yields (58–89%) and short decay times (2.5–15 µs). It has been shown that the Davydov model underlying the symmetry-based design strategy significantly increases the radiative constants of the “dimers” [M2¬(tpbz)(NHC)2¬]2+ compared to the “monomers” [M(dppb)(NHC)]+ based on 1,2-bis(diphenylphosphino)benzene (dppb). The practical potential of the designed TADF emitters has been demonstrated through their application as innovative thermo- and vapor-chromic emissive inks for advanced anti-counterfeiting labels.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi01996b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01996b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为有机发光二极管(OLED)的发光体,表现出热激活延迟荧光(TADF)的硬币金属(I)配合物引起了全世界的关注。缩短衰减时间并提高此类发光体的量子效率是这一热门领域目前面临的挑战。为解决这一问题,本文采用基于对称性的设计策略,获得了由 1,2,4,5-四(二苯基膦)苯(tpbz)和 N-杂环碳烯(NHC)配体构成的伪对称配合物 [M2-(tpbz)(NHC)2¬]2+(M = 铜、银、金)。在固态下,这些化合物呈现出金属-配体电荷转移类型的青黄色 TADF,具有极佳的量子产率(58-89%)和较短的衰减时间(2.5-15 µs)。研究表明,与基于 1,2-双(二苯基膦)苯(dppb)的 "单体"[M(dppb)(NHC)]+ 相比,基于对称性设计策略的达维多夫模型显著提高了 "二聚体"[M2¬(tpbz)(NHC)2¬]2+ 的辐射常数。所设计的 TADF 发射器通过应用于先进防伪标签的创新热致和气致变色发射油墨,证明了其实用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward highly efficient TADF-active Cu(I), Ag(I) and Au(I) carbene complexes using symmetry-based design strategy
Coinage metal(I) complexes exhibiting thermally activated delayed fluorescence (TADF) have attracted worldwide attention as emitters for OLEDs. Reducing the decay times and increasing the quantum efficiency of such emitters is the current challenge in this hot field. To address this issue, a symmetry-based design strategy has been applied herein to obtain pseudo-symmetric complexes [M2-(tpbz)(NHC)2¬]2+ (M = Cu, Ag, Au) scaffolded by 1,2,4,5-tetrakis(diphenylphosphino)benzene (tpbz) and N-heterocyclic carbene (NHC) ligands. In the solid state, these compounds exhibit cyan-to-yellow TADF of the metal-to-ligand charge transfer type with excellent quantum yields (58–89%) and short decay times (2.5–15 µs). It has been shown that the Davydov model underlying the symmetry-based design strategy significantly increases the radiative constants of the “dimers” [M2¬(tpbz)(NHC)2¬]2+ compared to the “monomers” [M(dppb)(NHC)]+ based on 1,2-bis(diphenylphosphino)benzene (dppb). The practical potential of the designed TADF emitters has been demonstrated through their application as innovative thermo- and vapor-chromic emissive inks for advanced anti-counterfeiting labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1