评估分子对接中的小分子构象取样方法

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2024-10-30 DOI:10.1002/jcc.27516
Qiancheng Xia, Qiuyu Fu, Cheng Shen, Ruth Brenk, Niu Huang
{"title":"评估分子对接中的小分子构象取样方法","authors":"Qiancheng Xia, Qiuyu Fu, Cheng Shen, Ruth Brenk, Niu Huang","doi":"10.1002/jcc.27516","DOIUrl":null,"url":null,"abstract":"Small molecule conformational sampling plays a pivotal role in molecular docking. Recent advancements have led to the emergence of various conformational sampling methods, each employing distinct algorithms. This study investigates the impact of different small molecule conformational sampling methods in molecular docking using UCSF DOCK 3.7. Specifically, six traditional sampling methods (Omega, BCL::Conf, CCDC Conformer Generator, ConfGenX, Conformator, RDKit ETKDGv3) and a deep learning-based model (Torsional Diffusion) for generating conformational ensembles are evaluated. These ensembles are subsequently docked against the Platinum Diverse Dataset, the PoseBusters dataset and the DUDE-Z dataset to assess binding pose reproducibility and screening power. Notably, different sampling methods exhibit varying performance due to their unique preferences, such as dihedral angle sampling ranges on rotatable bonds. Combining complementary methods may lead to further improvements in docking performance.","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"66 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing small molecule conformational sampling methods in molecular docking\",\"authors\":\"Qiancheng Xia, Qiuyu Fu, Cheng Shen, Ruth Brenk, Niu Huang\",\"doi\":\"10.1002/jcc.27516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small molecule conformational sampling plays a pivotal role in molecular docking. Recent advancements have led to the emergence of various conformational sampling methods, each employing distinct algorithms. This study investigates the impact of different small molecule conformational sampling methods in molecular docking using UCSF DOCK 3.7. Specifically, six traditional sampling methods (Omega, BCL::Conf, CCDC Conformer Generator, ConfGenX, Conformator, RDKit ETKDGv3) and a deep learning-based model (Torsional Diffusion) for generating conformational ensembles are evaluated. These ensembles are subsequently docked against the Platinum Diverse Dataset, the PoseBusters dataset and the DUDE-Z dataset to assess binding pose reproducibility and screening power. Notably, different sampling methods exhibit varying performance due to their unique preferences, such as dihedral angle sampling ranges on rotatable bonds. Combining complementary methods may lead to further improvements in docking performance.\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/jcc.27516\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/jcc.27516","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

小分子构象取样在分子对接中起着举足轻重的作用。最近的进步导致了各种构象取样方法的出现,每种方法都采用了不同的算法。本研究使用 UCSF DOCK 3.7 研究了不同小分子构象取样方法对分子对接的影响。具体来说,本研究评估了六种传统采样方法(Omega、BCL::Conf、CCDC Conformer Generator、ConfGenX、Conformator、RDKit ETKDGv3)和一种基于深度学习的模型(扭转扩散),用于生成构象合集。随后将这些构象组合与 Platinum Diverse 数据集、PoseBusters 数据集和 DUDE-Z 数据集进行对接,以评估结合姿态的重现性和筛选能力。值得注意的是,不同的取样方法因其独特的偏好(如可旋转键的二面角取样范围)而表现出不同的性能。结合互补方法可能会进一步提高对接性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing small molecule conformational sampling methods in molecular docking
Small molecule conformational sampling plays a pivotal role in molecular docking. Recent advancements have led to the emergence of various conformational sampling methods, each employing distinct algorithms. This study investigates the impact of different small molecule conformational sampling methods in molecular docking using UCSF DOCK 3.7. Specifically, six traditional sampling methods (Omega, BCL::Conf, CCDC Conformer Generator, ConfGenX, Conformator, RDKit ETKDGv3) and a deep learning-based model (Torsional Diffusion) for generating conformational ensembles are evaluated. These ensembles are subsequently docked against the Platinum Diverse Dataset, the PoseBusters dataset and the DUDE-Z dataset to assess binding pose reproducibility and screening power. Notably, different sampling methods exhibit varying performance due to their unique preferences, such as dihedral angle sampling ranges on rotatable bonds. Combining complementary methods may lead to further improvements in docking performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Issue Information DC24: A new density coherence functional for multiconfiguration density‐coherence functional theory Excited state relaxation mechanisms of paracetamol and acetanilide. Stable, aromatic, and electrophilic azepinium ions: Design using quantum chemical methods Assessing small molecule conformational sampling methods in molecular docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1