{"title":"基于共掺杂碳点纳米酶的氧化酶模拟活性的粘附-3D 纸微流体分析装置,用于碱性磷酸酶的床旁检测","authors":"Jing Guo , Jing Zhang , Xia Tong","doi":"10.1016/j.aca.2024.343378","DOIUrl":null,"url":null,"abstract":"<div><div>Paper-based microfluidic analytical devices (μPADs) have become promising alternatives to clinical laboratory-based methods for point-of-care testing (POCT) of biomarkers in family care and resource-limited communities. Here, Co-doped carbon dots (Co-CDs) nanozyme with outstanding oxidase-mimicking catalytic activity and red fluorescent emission were prepared, and combined adhered-3D μPAD (A-3D μPAD) to monitor facilely alkaline phosphatase (ALP) level in whole blood samples. Co-CDs catalyzed the oxidization of nonfluorescent <em>o</em>-phenylenediamine (OPD) into 2,3-diaminophenazine (oxOPD) with yellow fluorescent emission due to the generation of tremendous O<sub>2</sub><sup>•-</sup> species. With addition of ALP, ALP hydrolyzed <span>l</span>-ascorbic acid 2-phosphate into ascorbic acid, and the latter was oxidized by Co-CDs, then reacted with OPD to form blue fluorescent emission 3-(dihydroxyethyl)furo [3,4-b]quinoxaline-1-one (DFQ). Both DFQ and oxOPD quenched the fluorescence intensity of Co-CDs <em>via</em> inner-filter effect. The cascade reaction of ALP/Co-CDs was incorporated into A-3D μPAD based on above sensing principles. A-3D μPAD enabled sample pretreatment, cascade reaction and signal output, and integrated portable minimized device and smartphone for visual ALP detection. The linear range and limit of detection for ALP were 0.5–150 U L<sup>−1</sup> and 0.1 U L<sup>−1</sup>, respectively, and the color varied from red, yellow to blue. The detection results for whole blood samples were consistent with biochemical detector. The efficiency, disposability, practicality and low-cost of A-3D μPAD can be extended to determine various biomarkers, and provided technical support for nanozyme applications in POCT environments.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1332 ","pages":"Article 343378"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adhered-3D paper microfluidic analytical device based on oxidase-mimicking activity of Co-doped carbon dots nanozyme for point-of-care testing of alkaline phosphatase\",\"authors\":\"Jing Guo , Jing Zhang , Xia Tong\",\"doi\":\"10.1016/j.aca.2024.343378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Paper-based microfluidic analytical devices (μPADs) have become promising alternatives to clinical laboratory-based methods for point-of-care testing (POCT) of biomarkers in family care and resource-limited communities. Here, Co-doped carbon dots (Co-CDs) nanozyme with outstanding oxidase-mimicking catalytic activity and red fluorescent emission were prepared, and combined adhered-3D μPAD (A-3D μPAD) to monitor facilely alkaline phosphatase (ALP) level in whole blood samples. Co-CDs catalyzed the oxidization of nonfluorescent <em>o</em>-phenylenediamine (OPD) into 2,3-diaminophenazine (oxOPD) with yellow fluorescent emission due to the generation of tremendous O<sub>2</sub><sup>•-</sup> species. With addition of ALP, ALP hydrolyzed <span>l</span>-ascorbic acid 2-phosphate into ascorbic acid, and the latter was oxidized by Co-CDs, then reacted with OPD to form blue fluorescent emission 3-(dihydroxyethyl)furo [3,4-b]quinoxaline-1-one (DFQ). Both DFQ and oxOPD quenched the fluorescence intensity of Co-CDs <em>via</em> inner-filter effect. The cascade reaction of ALP/Co-CDs was incorporated into A-3D μPAD based on above sensing principles. A-3D μPAD enabled sample pretreatment, cascade reaction and signal output, and integrated portable minimized device and smartphone for visual ALP detection. The linear range and limit of detection for ALP were 0.5–150 U L<sup>−1</sup> and 0.1 U L<sup>−1</sup>, respectively, and the color varied from red, yellow to blue. The detection results for whole blood samples were consistent with biochemical detector. The efficiency, disposability, practicality and low-cost of A-3D μPAD can be extended to determine various biomarkers, and provided technical support for nanozyme applications in POCT environments.</div></div>\",\"PeriodicalId\":240,\"journal\":{\"name\":\"Analytica Chimica Acta\",\"volume\":\"1332 \",\"pages\":\"Article 343378\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003267024011796\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267024011796","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Adhered-3D paper microfluidic analytical device based on oxidase-mimicking activity of Co-doped carbon dots nanozyme for point-of-care testing of alkaline phosphatase
Paper-based microfluidic analytical devices (μPADs) have become promising alternatives to clinical laboratory-based methods for point-of-care testing (POCT) of biomarkers in family care and resource-limited communities. Here, Co-doped carbon dots (Co-CDs) nanozyme with outstanding oxidase-mimicking catalytic activity and red fluorescent emission were prepared, and combined adhered-3D μPAD (A-3D μPAD) to monitor facilely alkaline phosphatase (ALP) level in whole blood samples. Co-CDs catalyzed the oxidization of nonfluorescent o-phenylenediamine (OPD) into 2,3-diaminophenazine (oxOPD) with yellow fluorescent emission due to the generation of tremendous O2•- species. With addition of ALP, ALP hydrolyzed l-ascorbic acid 2-phosphate into ascorbic acid, and the latter was oxidized by Co-CDs, then reacted with OPD to form blue fluorescent emission 3-(dihydroxyethyl)furo [3,4-b]quinoxaline-1-one (DFQ). Both DFQ and oxOPD quenched the fluorescence intensity of Co-CDs via inner-filter effect. The cascade reaction of ALP/Co-CDs was incorporated into A-3D μPAD based on above sensing principles. A-3D μPAD enabled sample pretreatment, cascade reaction and signal output, and integrated portable minimized device and smartphone for visual ALP detection. The linear range and limit of detection for ALP were 0.5–150 U L−1 and 0.1 U L−1, respectively, and the color varied from red, yellow to blue. The detection results for whole blood samples were consistent with biochemical detector. The efficiency, disposability, practicality and low-cost of A-3D μPAD can be extended to determine various biomarkers, and provided technical support for nanozyme applications in POCT environments.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.