Archana Pandiyan , Renganathan Vengudusamy , Loganathan Veeramuthu , Amirthavarshini Muthuraman , Yu-Chen Wang , Hyunjin Lee , Tao Zhou , C.R. Kao , Chi-Ching Kuo
{"title":"用于环境修复的自供电可持续智能纺织品中尺寸受限的 MXene 纳米片的协同效应","authors":"Archana Pandiyan , Renganathan Vengudusamy , Loganathan Veeramuthu , Amirthavarshini Muthuraman , Yu-Chen Wang , Hyunjin Lee , Tao Zhou , C.R. Kao , Chi-Ching Kuo","doi":"10.1016/j.nanoen.2024.110426","DOIUrl":null,"url":null,"abstract":"<div><div>Green renewable technologies have become a focus of energy research due to the adverse impacts of fossil fuels, greenhouse gases, climate change, global warming, and battery short life. A new generation of biomaterials with spontaneous piezoelectric properties is highly emerging for generating electricity from ubiquitous mechanical energy. Recent years, there has been a concerted effort to engineer robust 1D functional materials for nanogenerators, leveraging cellulose as the foundational material. This research work produced nanofiber composite of zinc oxide (ZnO) nanoparticles and MXene (Ti<sub>3</sub>C<sub>2</sub>) nanosheets incorporated into cellulose acetate (CA) polymer through electrospinning process forms the basis for ecofriendly highly durable smart textile fabrication. Formation of MXene nanosheets heterostructures significantly promoted the low conversion efficiency of conventional ZnO to highest output voltage of ⁓35 V, and a short circuit current of ⁓3.34 µA. Synergistic contribution of the piezo-enhanced photocatalytic activity of MXene/ZnO hetero-structured smart nanofibers offers greater environmental remediation of water resources from the contamination of methyl orange (MO) dye with a rate constant (k) of 66.14×10<sup>−3</sup> min<sup>−1</sup>. In addition, intelligent dual mechanistic membranes support sustainable operations (20000 cycles) with strong morphological and performance retention (⁓92 %), showing good chemical and mechanical stability even under harsh operating conditions.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"133 ","pages":"Article 110426"},"PeriodicalIF":16.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of size-confined mxene nanosheets in self-powered sustainable smart textiles for environmental remediation\",\"authors\":\"Archana Pandiyan , Renganathan Vengudusamy , Loganathan Veeramuthu , Amirthavarshini Muthuraman , Yu-Chen Wang , Hyunjin Lee , Tao Zhou , C.R. Kao , Chi-Ching Kuo\",\"doi\":\"10.1016/j.nanoen.2024.110426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Green renewable technologies have become a focus of energy research due to the adverse impacts of fossil fuels, greenhouse gases, climate change, global warming, and battery short life. A new generation of biomaterials with spontaneous piezoelectric properties is highly emerging for generating electricity from ubiquitous mechanical energy. Recent years, there has been a concerted effort to engineer robust 1D functional materials for nanogenerators, leveraging cellulose as the foundational material. This research work produced nanofiber composite of zinc oxide (ZnO) nanoparticles and MXene (Ti<sub>3</sub>C<sub>2</sub>) nanosheets incorporated into cellulose acetate (CA) polymer through electrospinning process forms the basis for ecofriendly highly durable smart textile fabrication. Formation of MXene nanosheets heterostructures significantly promoted the low conversion efficiency of conventional ZnO to highest output voltage of ⁓35 V, and a short circuit current of ⁓3.34 µA. Synergistic contribution of the piezo-enhanced photocatalytic activity of MXene/ZnO hetero-structured smart nanofibers offers greater environmental remediation of water resources from the contamination of methyl orange (MO) dye with a rate constant (k) of 66.14×10<sup>−3</sup> min<sup>−1</sup>. In addition, intelligent dual mechanistic membranes support sustainable operations (20000 cycles) with strong morphological and performance retention (⁓92 %), showing good chemical and mechanical stability even under harsh operating conditions.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"133 \",\"pages\":\"Article 110426\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524011789\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524011789","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Synergistic effects of size-confined mxene nanosheets in self-powered sustainable smart textiles for environmental remediation
Green renewable technologies have become a focus of energy research due to the adverse impacts of fossil fuels, greenhouse gases, climate change, global warming, and battery short life. A new generation of biomaterials with spontaneous piezoelectric properties is highly emerging for generating electricity from ubiquitous mechanical energy. Recent years, there has been a concerted effort to engineer robust 1D functional materials for nanogenerators, leveraging cellulose as the foundational material. This research work produced nanofiber composite of zinc oxide (ZnO) nanoparticles and MXene (Ti3C2) nanosheets incorporated into cellulose acetate (CA) polymer through electrospinning process forms the basis for ecofriendly highly durable smart textile fabrication. Formation of MXene nanosheets heterostructures significantly promoted the low conversion efficiency of conventional ZnO to highest output voltage of ⁓35 V, and a short circuit current of ⁓3.34 µA. Synergistic contribution of the piezo-enhanced photocatalytic activity of MXene/ZnO hetero-structured smart nanofibers offers greater environmental remediation of water resources from the contamination of methyl orange (MO) dye with a rate constant (k) of 66.14×10−3 min−1. In addition, intelligent dual mechanistic membranes support sustainable operations (20000 cycles) with strong morphological and performance retention (⁓92 %), showing good chemical and mechanical stability even under harsh operating conditions.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.