S. Dinesh Kumar, Jin Kyeong Lee, Naveen Kumar Radhakrishnan, Jeong Kyu Bang, Byeongkwon Kim, Shubhash Chandra Chaudhary, Ajish Chelladurai, Byambasuren Ganbaatar, Eun Young Kim, Chul Won Lee, Sungtae Yang, Yangmee Kim, Song Yub Shin
{"title":"一种新型凝血酶生成肽在败血症模型中的抗菌、抗生物膜和抗炎作用:揭示内在机制","authors":"S. Dinesh Kumar, Jin Kyeong Lee, Naveen Kumar Radhakrishnan, Jeong Kyu Bang, Byeongkwon Kim, Shubhash Chandra Chaudhary, Ajish Chelladurai, Byambasuren Ganbaatar, Eun Young Kim, Chul Won Lee, Sungtae Yang, Yangmee Kim, Song Yub Shin","doi":"10.1021/acs.jmedchem.4c02157","DOIUrl":null,"url":null,"abstract":"We developed two short helical antimicrobial peptides, HVF18-a3 and its <span>d</span>-enantiomer, HVF18-a3-d, derived from the thrombin C-terminal peptide HVF18. These peptides exhibit potent antimicrobial activity against various bacteria by compromising both the outer and inner membranes, with low hemolytic activity. They are stable in the presence of physiological salts and human serum, exhibiting a low potential for developing drug resistance and excellent antibiofilm activity against Gram-negative bacteria. HVF18-a3-d also neutralized lipopolysaccharide (LPS) through direct binding interactions and suppressed the production of inflammatory cytokines through the inflammatory signaling pathway mediated by Toll-like receptor 4 in RAW264.7 cells stimulated with LPS. Both pre- and post-treatment with HVF18-a3-d significantly protected mice against fatal septic shock induced by carbapenem resistant <i>Acinetobacter baumannii</i>. These findings suggest HVF18-a3 and HVF18-a3-d are promising candidates for developing antibiotics against Gram-negative sepsis.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial, Antibiofilm, and Anti-inflammatory Effects of a Novel Thrombin-Derived Peptide in Sepsis Models: Insights into Underlying Mechanisms\",\"authors\":\"S. Dinesh Kumar, Jin Kyeong Lee, Naveen Kumar Radhakrishnan, Jeong Kyu Bang, Byeongkwon Kim, Shubhash Chandra Chaudhary, Ajish Chelladurai, Byambasuren Ganbaatar, Eun Young Kim, Chul Won Lee, Sungtae Yang, Yangmee Kim, Song Yub Shin\",\"doi\":\"10.1021/acs.jmedchem.4c02157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed two short helical antimicrobial peptides, HVF18-a3 and its <span>d</span>-enantiomer, HVF18-a3-d, derived from the thrombin C-terminal peptide HVF18. These peptides exhibit potent antimicrobial activity against various bacteria by compromising both the outer and inner membranes, with low hemolytic activity. They are stable in the presence of physiological salts and human serum, exhibiting a low potential for developing drug resistance and excellent antibiofilm activity against Gram-negative bacteria. HVF18-a3-d also neutralized lipopolysaccharide (LPS) through direct binding interactions and suppressed the production of inflammatory cytokines through the inflammatory signaling pathway mediated by Toll-like receptor 4 in RAW264.7 cells stimulated with LPS. Both pre- and post-treatment with HVF18-a3-d significantly protected mice against fatal septic shock induced by carbapenem resistant <i>Acinetobacter baumannii</i>. These findings suggest HVF18-a3 and HVF18-a3-d are promising candidates for developing antibiotics against Gram-negative sepsis.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c02157\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02157","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Antibacterial, Antibiofilm, and Anti-inflammatory Effects of a Novel Thrombin-Derived Peptide in Sepsis Models: Insights into Underlying Mechanisms
We developed two short helical antimicrobial peptides, HVF18-a3 and its d-enantiomer, HVF18-a3-d, derived from the thrombin C-terminal peptide HVF18. These peptides exhibit potent antimicrobial activity against various bacteria by compromising both the outer and inner membranes, with low hemolytic activity. They are stable in the presence of physiological salts and human serum, exhibiting a low potential for developing drug resistance and excellent antibiofilm activity against Gram-negative bacteria. HVF18-a3-d also neutralized lipopolysaccharide (LPS) through direct binding interactions and suppressed the production of inflammatory cytokines through the inflammatory signaling pathway mediated by Toll-like receptor 4 in RAW264.7 cells stimulated with LPS. Both pre- and post-treatment with HVF18-a3-d significantly protected mice against fatal septic shock induced by carbapenem resistant Acinetobacter baumannii. These findings suggest HVF18-a3 and HVF18-a3-d are promising candidates for developing antibiotics against Gram-negative sepsis.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.