{"title":"在一种简单的有机铝络合物催化下,α-亚甲基-δ-戊内酯发生化学选择性开环聚合反应,从而制备闭环可回收功能聚酯。","authors":"Qin Yan, Jiashu Ma, Weijie Pei, Yaxin Zhang, Ronglin Zhong, Shaofeng Liu, Yong Shen, Zhibo Li","doi":"10.1002/anie.202418488","DOIUrl":null,"url":null,"abstract":"<p><p>α-Methylene-δ-valerolactone (MVL) as a bio-renewable bifunctional monomer has shown great promise to prepare closed-loop recyclable polyester with pendent functionalizable double bond. However, the chemoselective ring-opening polymerization (ROP) of MVL still faces challenges including low polymerization temperature, expensive catalyst as well as high catalyst loading. In this contribution, we present the chemoselective and controlled ROP of MVL using a simple organoaluminum complex [MeAl(BHT)2] (BHT = 2,6-di-tert-butyl-4-methylphenoxy), which can be easily prepared from commercially available trimethylaluminum and 2,6-di-tert-butyl-4-methylphenol without purification. MeAl(BHT)2 exhibits much higher catalytic activity (TOF = 668 h-1) than that of MeAl[Salen] (TOF = 89 h-1), a commonly used organoaluminum catalyst. The high chemoselectivity and activity of MeAl(BHT)2 is proposed to originate from the cooperative activation of propagating chain-ends and monomers via the \"coordination-insertion\" mechanism. Remarkably, high-molecular-weight P(MVL)ROP can be prepared in bulk using MeAl(BHT)2, which is not accessible by the previous catalysts. This study may advance the development of closed-loop recyclable polymers considering the easy preparation, low cost and good catalytic performance of MeAl(BHT)2.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemoselective Ring-opening Polymerization of α-Methylene-δ-valerolactone Catalyzed by a Simple Organoaluminum Complex to Prepare Closed-loop Recyclable Functional Polyester.\",\"authors\":\"Qin Yan, Jiashu Ma, Weijie Pei, Yaxin Zhang, Ronglin Zhong, Shaofeng Liu, Yong Shen, Zhibo Li\",\"doi\":\"10.1002/anie.202418488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>α-Methylene-δ-valerolactone (MVL) as a bio-renewable bifunctional monomer has shown great promise to prepare closed-loop recyclable polyester with pendent functionalizable double bond. However, the chemoselective ring-opening polymerization (ROP) of MVL still faces challenges including low polymerization temperature, expensive catalyst as well as high catalyst loading. In this contribution, we present the chemoselective and controlled ROP of MVL using a simple organoaluminum complex [MeAl(BHT)2] (BHT = 2,6-di-tert-butyl-4-methylphenoxy), which can be easily prepared from commercially available trimethylaluminum and 2,6-di-tert-butyl-4-methylphenol without purification. MeAl(BHT)2 exhibits much higher catalytic activity (TOF = 668 h-1) than that of MeAl[Salen] (TOF = 89 h-1), a commonly used organoaluminum catalyst. The high chemoselectivity and activity of MeAl(BHT)2 is proposed to originate from the cooperative activation of propagating chain-ends and monomers via the \\\"coordination-insertion\\\" mechanism. Remarkably, high-molecular-weight P(MVL)ROP can be prepared in bulk using MeAl(BHT)2, which is not accessible by the previous catalysts. This study may advance the development of closed-loop recyclable polymers considering the easy preparation, low cost and good catalytic performance of MeAl(BHT)2.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202418488\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418488","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemoselective Ring-opening Polymerization of α-Methylene-δ-valerolactone Catalyzed by a Simple Organoaluminum Complex to Prepare Closed-loop Recyclable Functional Polyester.
α-Methylene-δ-valerolactone (MVL) as a bio-renewable bifunctional monomer has shown great promise to prepare closed-loop recyclable polyester with pendent functionalizable double bond. However, the chemoselective ring-opening polymerization (ROP) of MVL still faces challenges including low polymerization temperature, expensive catalyst as well as high catalyst loading. In this contribution, we present the chemoselective and controlled ROP of MVL using a simple organoaluminum complex [MeAl(BHT)2] (BHT = 2,6-di-tert-butyl-4-methylphenoxy), which can be easily prepared from commercially available trimethylaluminum and 2,6-di-tert-butyl-4-methylphenol without purification. MeAl(BHT)2 exhibits much higher catalytic activity (TOF = 668 h-1) than that of MeAl[Salen] (TOF = 89 h-1), a commonly used organoaluminum catalyst. The high chemoselectivity and activity of MeAl(BHT)2 is proposed to originate from the cooperative activation of propagating chain-ends and monomers via the "coordination-insertion" mechanism. Remarkably, high-molecular-weight P(MVL)ROP can be prepared in bulk using MeAl(BHT)2, which is not accessible by the previous catalysts. This study may advance the development of closed-loop recyclable polymers considering the easy preparation, low cost and good catalytic performance of MeAl(BHT)2.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.