无膜水电解低成本制氢技术。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-30 DOI:10.1002/anie.202417987
Xintong Gao, Pengtang Wang, Xiaogang Sun, Mietek Jaroniec, Yao Zheng, Shizhang Qiao
{"title":"无膜水电解低成本制氢技术。","authors":"Xintong Gao, Pengtang Wang, Xiaogang Sun, Mietek Jaroniec, Yao Zheng, Shizhang Qiao","doi":"10.1002/anie.202417987","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional water electrolysis relies on expensive membrane-electrode assemblies and sluggish oxygen evolution reaction (OER) at the anode. Here, we develop an innovative and efficient membrane-free water electrolysis system to overcome these two obstacles simultaneously. This system utilizes the thermodynamically more favorable urea oxidation reaction (UOR) to generate clean N2 over a new class of Cu-based catalyst (CuXO), fundamentally eliminating the explosion risk of H2 and O2 mixing while removing the need for membranes. Notably, this membrane-free electrolysis system exhibits the highest H2 Faradaic efficiency among reported membrane-free electrolysis work. In situ spectroscopic studies reveal that the new N2Hy intermediate-mediated UOR mechanism on the CuXO catalyst ensures its unique N2 selectivity and OER inertness. More importantly, an industrial-type membrane-free water electrolyser (MFE) based on this system successfully reduces electricity consumption to only 3.87 kWh Nm-3, significantly lower than the 5.17 kWh Nm-3 of commercial alkaline water electrolyzers (AWE). Comprehensive techno-economic analysis (TEA) suggests that the membrane-free design and reduced electricity input of the MFE plants reduce the green H2 production cost to US$1.81 kg-1, which is lower than those of grey H2 while meeting the technical target (US$2.00-2.50 kg-1) set by European Commission and United States Department of Energy.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost.\",\"authors\":\"Xintong Gao, Pengtang Wang, Xiaogang Sun, Mietek Jaroniec, Yao Zheng, Shizhang Qiao\",\"doi\":\"10.1002/anie.202417987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional water electrolysis relies on expensive membrane-electrode assemblies and sluggish oxygen evolution reaction (OER) at the anode. Here, we develop an innovative and efficient membrane-free water electrolysis system to overcome these two obstacles simultaneously. This system utilizes the thermodynamically more favorable urea oxidation reaction (UOR) to generate clean N2 over a new class of Cu-based catalyst (CuXO), fundamentally eliminating the explosion risk of H2 and O2 mixing while removing the need for membranes. Notably, this membrane-free electrolysis system exhibits the highest H2 Faradaic efficiency among reported membrane-free electrolysis work. In situ spectroscopic studies reveal that the new N2Hy intermediate-mediated UOR mechanism on the CuXO catalyst ensures its unique N2 selectivity and OER inertness. More importantly, an industrial-type membrane-free water electrolyser (MFE) based on this system successfully reduces electricity consumption to only 3.87 kWh Nm-3, significantly lower than the 5.17 kWh Nm-3 of commercial alkaline water electrolyzers (AWE). Comprehensive techno-economic analysis (TEA) suggests that the membrane-free design and reduced electricity input of the MFE plants reduce the green H2 production cost to US$1.81 kg-1, which is lower than those of grey H2 while meeting the technical target (US$2.00-2.50 kg-1) set by European Commission and United States Department of Energy.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202417987\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的水电解依赖于昂贵的膜电极组件和阳极缓慢的氧进化反应(OER)。在此,我们开发了一种创新、高效的无膜水电解系统,以同时克服这两个障碍。该系统利用热力学上更有利的尿素氧化反应(UOR),在新型铜基催化剂(CuXO)上生成清洁的 N2,从根本上消除了 H2 和 O2 混合的爆炸风险,同时无需使用膜。值得注意的是,在已报道的无膜电解工作中,这种无膜电解系统显示出最高的 H2 法拉第效率。原位光谱研究表明,CuXO 催化剂上新的 N2Hy 中间体 UOR 机制确保了其独特的 N2 选择性和 OER 惰性。更重要的是,基于该系统的工业型无膜水电解槽(MFE)成功地将耗电量降至 3.87 kWh Nm-3,大大低于商用碱性水电解槽(AWE)的 5.17 kWh Nm-3。综合技术经济分析(TEA)表明,MFE 工厂的无膜设计和减少的电力输入将绿色 H2 的生产成本降至 1.81 美元 kg-1,低于灰色 H2 的生产成本,同时达到了欧盟委员会和美国能源部设定的技术目标(2.00-2.50 美元 kg-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Membrane-Free Water Electrolysis for Hydrogen Generation with Low Cost.

Conventional water electrolysis relies on expensive membrane-electrode assemblies and sluggish oxygen evolution reaction (OER) at the anode. Here, we develop an innovative and efficient membrane-free water electrolysis system to overcome these two obstacles simultaneously. This system utilizes the thermodynamically more favorable urea oxidation reaction (UOR) to generate clean N2 over a new class of Cu-based catalyst (CuXO), fundamentally eliminating the explosion risk of H2 and O2 mixing while removing the need for membranes. Notably, this membrane-free electrolysis system exhibits the highest H2 Faradaic efficiency among reported membrane-free electrolysis work. In situ spectroscopic studies reveal that the new N2Hy intermediate-mediated UOR mechanism on the CuXO catalyst ensures its unique N2 selectivity and OER inertness. More importantly, an industrial-type membrane-free water electrolyser (MFE) based on this system successfully reduces electricity consumption to only 3.87 kWh Nm-3, significantly lower than the 5.17 kWh Nm-3 of commercial alkaline water electrolyzers (AWE). Comprehensive techno-economic analysis (TEA) suggests that the membrane-free design and reduced electricity input of the MFE plants reduce the green H2 production cost to US$1.81 kg-1, which is lower than those of grey H2 while meeting the technical target (US$2.00-2.50 kg-1) set by European Commission and United States Department of Energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Spiro-Carbon-Locking and Sulfur-Embedding Strategy for Constructing Deep-Red Organic Electroluminescent Emitter with High Efficiency. A Hypothesis on the Function of High-Valent Fe in NiFe (Hydr)oxide in the Oxygen-Evolution Reaction. Supramolecular Crystals based Fast Single Ion Conductor for Long-cycling Solid Zinc Batteries. Unprecedented Photoinduced-Electron-Transfer Probe with a Turn-ON Chemiluminescence Mode-of-Action. α-Nucleophilic Addition to α,β-Unsaturated Carbonyl Compounds via Photocatalytically Generated α-Carbonyl Carbocations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1