二元(分裂)DNA 酶(BiDz)和二元 DNA 机(biDNM)对 RNA 的标记依赖性裂解。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-29 DOI:10.1002/cbic.202400665
Mikhail V Dubovichenko, Daria D Nedorezova, Christina Patra, Valeria S Drozd, Vladimir S Andrianov, Anna I Ashmarova, Vivian O Nnanyereugo, Ahmed A Eldeeb, Dmitry M Kolpashchikov
{"title":"二元(分裂)DNA 酶(BiDz)和二元 DNA 机(biDNM)对 RNA 的标记依赖性裂解。","authors":"Mikhail V Dubovichenko, Daria D Nedorezova, Christina Patra, Valeria S Drozd, Vladimir S Andrianov, Anna I Ashmarova, Vivian O Nnanyereugo, Ahmed A Eldeeb, Dmitry M Kolpashchikov","doi":"10.1002/cbic.202400665","DOIUrl":null,"url":null,"abstract":"<p><p>Oligonucleotide gene therapy (OGT) can be used to suppress specific RNA in cells and thus have been explored for gene therapy. Despite extensive effort, there is no clinically significant OGT for treating cancer. Low efficiency of OGT is one of the problems. Earlier, we proposed to address this problem by suppressing most vital genes in cancer cells e.g. housekeeping genes. To achieve specific activation of the OGT agents in cancer but not in normal cells, we designed binary (split) DNAzyme (BiDz), which is activated by cancer-related nucleic acid sequences. This work is devoted to BiDz optimization using cancer marker-related sequence as an activator and three folded RNA targets. To achieve efficient binding of folded RNA, the BiDz design was equipped with RNA binding/unwinding arms, a construction that was dabbed 'BiDz machines' (BiDM). BiDM was designed to have improved both iRNA cleavage rates and RNA recognition in comparison with BiDz. Further development of DNA nanotechnology-inspired agents can advance OGT technology in treating cancer, viral infections, and genetic disorders.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marker-dependent cleavage of RNA by binary (split) DNAzyme (BiDz) and binary DNA machines (biDNM).\",\"authors\":\"Mikhail V Dubovichenko, Daria D Nedorezova, Christina Patra, Valeria S Drozd, Vladimir S Andrianov, Anna I Ashmarova, Vivian O Nnanyereugo, Ahmed A Eldeeb, Dmitry M Kolpashchikov\",\"doi\":\"10.1002/cbic.202400665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oligonucleotide gene therapy (OGT) can be used to suppress specific RNA in cells and thus have been explored for gene therapy. Despite extensive effort, there is no clinically significant OGT for treating cancer. Low efficiency of OGT is one of the problems. Earlier, we proposed to address this problem by suppressing most vital genes in cancer cells e.g. housekeeping genes. To achieve specific activation of the OGT agents in cancer but not in normal cells, we designed binary (split) DNAzyme (BiDz), which is activated by cancer-related nucleic acid sequences. This work is devoted to BiDz optimization using cancer marker-related sequence as an activator and three folded RNA targets. To achieve efficient binding of folded RNA, the BiDz design was equipped with RNA binding/unwinding arms, a construction that was dabbed 'BiDz machines' (BiDM). BiDM was designed to have improved both iRNA cleavage rates and RNA recognition in comparison with BiDz. Further development of DNA nanotechnology-inspired agents can advance OGT technology in treating cancer, viral infections, and genetic disorders.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

寡核苷酸基因疗法(OGT)可用于抑制细胞中的特定 RNA,因此已被用于基因疗法。尽管做了大量努力,但目前还没有治疗癌症的具有临床意义的寡核苷酸基因疗法。OGT效率低是问题之一。早些时候,我们提出通过抑制癌细胞中最重要的基因(如看家基因)来解决这一问题。为了在癌细胞而非正常细胞中实现 OGT 药剂的特异性激活,我们设计了二元(分裂)DNA 酶(BiDz),它能被与癌症相关的核酸序列激活。这项工作致力于利用癌症标记物相关序列作为激活剂和三个折叠 RNA 靶点对 BiDz 进行优化。为了实现与折叠 RNA 的高效结合,BiDz 设计配备了 RNA 结合/解旋臂,这种结构被称为 "BiDz 机器"(BiDM)。与 BiDz 相比,BiDM 的设计提高了 iRNA 的切割率和 RNA 的识别率。进一步开发受 DNA 纳米技术启发的制剂可推动 OGT 技术在治疗癌症、病毒感染和遗传疾病方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Marker-dependent cleavage of RNA by binary (split) DNAzyme (BiDz) and binary DNA machines (biDNM).

Oligonucleotide gene therapy (OGT) can be used to suppress specific RNA in cells and thus have been explored for gene therapy. Despite extensive effort, there is no clinically significant OGT for treating cancer. Low efficiency of OGT is one of the problems. Earlier, we proposed to address this problem by suppressing most vital genes in cancer cells e.g. housekeeping genes. To achieve specific activation of the OGT agents in cancer but not in normal cells, we designed binary (split) DNAzyme (BiDz), which is activated by cancer-related nucleic acid sequences. This work is devoted to BiDz optimization using cancer marker-related sequence as an activator and three folded RNA targets. To achieve efficient binding of folded RNA, the BiDz design was equipped with RNA binding/unwinding arms, a construction that was dabbed 'BiDz machines' (BiDM). BiDM was designed to have improved both iRNA cleavage rates and RNA recognition in comparison with BiDz. Further development of DNA nanotechnology-inspired agents can advance OGT technology in treating cancer, viral infections, and genetic disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1